Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 676405, 11 pages
Research Article

MIMO Channel Capacity in 2D and 3D Isotropic Environments

Electromagnetics Division, National Institute of Standards and Technology, RF Fields Group, 325 Broadway Street, MS 818.02, Boulder, CO 80305, USA

Received 5 January 2012; Accepted 19 March 2012

Academic Editor: Markus Landmann

Copyright © 2012 Ryan J. Pirkl and Kate A. Remley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We analyze theoretical distributions of MIMO channel capacity for different antennas in 2D and 3D statistically isotropic environments, which may be generated by multiprobe anechoic and reverberation chambers, respectively. We observe that the two environments yield comparable capacity distributions provided that (1) the 2D statistically isotropic environment’s capacity data are taken at many different antenna orientations and (2) the radiation elements have a low directivity. When these conditions are met, we find that the relative error between the 2D statistically isotropic environment’s orientation-combined capacity distribution and the 3D statistically isotropic environment’s capacity distribution is typically less than 10% for signal-to-noise ratios greater than 5 dB.