Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 698748, 11 pages
Research Article

Superimposed Training-Based Channel Estimation for MIMO Relay Networks

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

Received 31 May 2012; Accepted 14 July 2012

Academic Editor: Sumei Sun

Copyright © 2012 Xiaoyan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO) amplify-and-forward (AF) one-way relay network (OWRN) to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB) is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.