Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012 (2012), Article ID 786791, 10 pages
Research Article

New Configurations of Low-Cost Dual-Polarized Printed Antennas for UWB Arrays

1Institut d'Electronique et des Télécommunications de Rennes (IETR), UMR CNRS 6164, Université de Rennes 1, 35042 Rennes Cedex, France
2Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
3SELEX S.I. S.p.A., Sistemi Radianti, 00131 Rome, Italy

Received 15 August 2011; Revised 26 November 2011; Accepted 6 December 2011

Academic Editor: Athanasios Panagopoulos

Copyright © 2012 Guido Valerio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A novel class of structures is proposed to realize ultra-wide-band radiating elements for large arrays, providing dual polarization, beam scanning, and compact and inexpensive realization based on suitable rhombic arrangements of dipoles printed on low-cost layered substrates. In a first implementation, four rhombic shapes, orthogonally placed on the same layer, provide two orthogonal polarizations. In a second implementation, the two polarizations are excited by two rhombic shapes printed on two different layers in a stacked-patch-like arrangement. This latter structure leads to a better lateral shielding of the single radiating element, in order to reduce mutual interactions among adjacent elements in array environment. The behavioral features of these antennas have been tested with various parametric analyses. Practical aspects have been addressed such as the choice of appropriate feeding and of commercially available dielectric layers. The resulting antennas are matched at the input ports in an extremely wide range of frequencies (5–25 GHz), covering various microwave applications, such as aircraft surveillance, weather polarimetric radars, and control and communications systems. Good radiating features, in terms of pattern shape and gain, are observed in a large band of frequencies. The basic scanning performance of large and small array configurations is finally investigated.