Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 795464, 5 pages
Research Article

Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

1Integrated Center of Manufacture and Technology, SENAI, 41650-010 Salvador, BA, Brazil
2ENACOM Handcrafted Technologies, 31310-260 Belo Horizonte, MG, Brazil

Received 6 July 2011; Revised 9 November 2011; Accepted 26 November 2011

Academic Editor: Ning Yuan

Copyright © 2012 X. L. Travassos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.