Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2012, Article ID 859429, 7 pages
http://dx.doi.org/10.1155/2012/859429
Research Article

A Method for Extending the Bandwidth of Metamaterial Absorber

Department of Electronic Engineering, Kyonggi University, Kyonggi-do, Suwon 443-760, Republic of Korea

Received 13 September 2012; Accepted 28 October 2012

Academic Editor: Alejandro Lucas Borja

Copyright © 2012 Hong-Min Lee and Hyung-Sup Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 10, pp. 1443–1454, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, Article ID 207402, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics Express, vol. 16, no. 10, pp. 7181–7188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Cheng and H. Yang, “Design, simulation, and measurement of metamaterial absorber,” Journal of Applied Physics, vol. 108, no. 3, Article ID 034906, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Boratay Alici, A. Burak Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Optics Express, vol. 19, no. 15, pp. 14260–14267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Lee, Y. J. Yoon, and S. Lim, “Ultra-thin polarization independent absorber using hexagonal interdigital metamaterials,” ETRI Journal, vol. 34, no. 1, pp. 126–129, 2012. View at Google Scholar
  7. H. Tao, C. M. Bingham, D. Pilon et al., “A dual band terahertz metamaterial absorber,” Journal of Physics D, vol. 43, no. 22, Article ID 225102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Optics Express, vol. 19, no. 10, pp. 9401–9407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” Journal of Applied Physics, vol. 110, no. 1, Article ID 014909, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Physical Review B, vol. 75, no. 4, Article ID 041102, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” Journal of Applied Physics, vol. 110, no. 4, Article ID 044102, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus