Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013 (2013), Article ID 176704, 17 pages
Research Article

Quantification of Scenario Distance within Generic WINNER Channel Model

1Department for Power, Electronic and Communication Engineering, Faculty of Technical Sciences, Trg D. Obradovića 6, 2100 Novi Sad, Serbia
2Electronic Measurement Research Lab, Ilmenau University of Technology, PSF 100565, 98684 Ilmenau, Germany
3Digital Broadcasting Research Laboratory, Ilmenau University of Technology, PSF 100565, 98684 Ilmenau, Germany

Received 27 July 2012; Revised 29 October 2012; Accepted 1 November 2012

Academic Editor: Ai Bo

Copyright © 2013 Milan Narandžić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Starting from the premise that stochastic properties of a radio environment can be abstracted by defining scenarios, a generic MIMO channel model is built by the WINNER project. The parameter space of the WINNER model is, among others, described by normal probability distributions and correlation coefficients that provide a suitable space for scenario comparison. The possibility to quantify the distance between reference scenarios and measurements enables objective comparison and classification of measurements into scenario classes. In this paper we approximate the WINNER scenarios with multivariate normal distributions and then use the mean Kullback-Leibler divergence to quantify their divergence. The results show that the WINNER scenario groups (A, B, C, and D) or propagation classes (LoS, OLoS, and NLoS) do not necessarily ensure minimum separation within the groups/classes. Instead, the following grouping minimizes intragroup distances: (i) indoor-to-outdoor and outdoor-to-indoor scenarios (A2, B4, and C4), (ii) macrocell configurations for suburban, urban, and rural scenarios (C1, C2, and D1), and (iii) indoor/hotspot/microcellular scenarios (A1, B3, and B1). The computation of the divergence between Ilmenau and Dresden measurements and WINNER scenarios confirms that the parameters of the C2 scenario are a proper reference for a large variety of urban macrocell environments.