Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 475375, 8 pages
http://dx.doi.org/10.1155/2013/475375
Research Article

A mm-Wave 2D Ultra-Wideband Imaging Radar for Breast Cancer Detection

1Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
2Division of Oncology, IEO European Institute of Oncology, Via Ripamonte 435, 20141 Milano, Italy

Received 10 May 2013; Revised 11 July 2013; Accepted 14 July 2013

Academic Editor: Tzyh-Ghuang Ma

Copyright © 2013 Stefano Moscato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “International Agency for Research on Cancer,” http://globocan.iarc.fr/.
  2. “National Cancer Institute at the National Institutes of Health,” http://www.cancer.gov/.
  3. E. C. Fear, P. M. Meaney, and M. A. Stuchly, “Microwaves for breast cancer detection?” IEEE Potentials, vol. 22, no. 1, pp. 12–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten-year risk of false positive screening mammograms and clinical breast examinations,” The New England Journal of Medicine, vol. 338, no. 16, pp. 1089–1096, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1856–1865, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Collins, Foundations For Microwave Engineering, McGraw-Hill, 1966.
  7. M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, “Radar-based breast cancer detection using a hemispherical antenna array: experimental results,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 6, pp. 1692–1704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. E. Bialkowski, A. M. Abbosh, Y. Wang, D. Ireland, A. A. Bakar, and B. J. Mohammed, “Microwave imaging systems employing cylindrical, hemispherical and planar arrays of ultrawideband antennas,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '11), pp. 191–194, Melbourne, Australia, December 2011. View at Scopus
  9. M. E. Bialkowski, “Ultra wideband microwave system with novel image reconstruction strategies for breast cancer detection,” in Proceedings of the 40th European Microwave Conference, pp. 537–540, Paris, France, September 2010. View at Scopus
  10. M. O'Halloran, E. Jones, and M. Glavin, “Quasi-multistatic MIST beamforming for the early detection of breast cancer,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 830–840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bassi, A. Bevilacqua, A. Gerosa, and A. Neviani, “Integrated SFCW transceivers for UWB breast cancer imaging: architectures and circuit constraints,” IEEE Transactions on Circuits and Systems, vol. 59, no. 6, pp. 1228–1241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Yang, A. G. Yarovoy, and L. P. Ligthart, “UWB stacked patch antenna design for near-field imaging radar antenna array,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), pp. 817–821, Berlin, Germany, March 2009. View at Scopus
  13. N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microwave Magazine, vol. 12, no. 7, pp. 78–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. K. Amineh, M. Ravan, A. Khalatpour, and N. K. Nikolova, “Three-dimensional near-field microwave holography using reflected and transmitted signals,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4777–4789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kharkovsky, J. T. Case, M. T. Ghasr, R. Zoughi, S. W. Bae, and A. Belarbi, “Application of microwave 3D SAR imaging technique for evaluation of corrosion in steel rebars embedded in cement-based structures,” in Proceedings of the AIP Conference Proceedings, vol. 1430, pp. 1516–1523, 2012.
  16. A. Schiessl, S. S. Ahmed, A. Genghammer, and L.-P. Schmidt, “A technology demonstrator for a 0.5 m × 0.5 m fully electronic digital beamforming mm-Wave imaging system,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 2606–2609, Rome, Italy, April 2011. View at Scopus
  17. S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3567–3576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. B. Lim, N. T. Nhung, E. P. Li, and N. D. Thang, “Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 6, pp. 1697–1704, 2008. View at Google Scholar
  19. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 9, pp. 1581–1592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 509–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.
  22. S. S. Ahmed, A. Schiess, and L.-P. Schmidt, “Multistatic mm-wave imaging with planar 2D-arrays,” in Proceedings of the German Microwave Conference (GeMIC '09), Munich, Germany, March 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Zhuge, T. G. Savelyev, A. G. Yarovoy, L. P. Ligthart, and B. Levitas, “Comparison of different migration techniques for UWB short-range imaging,” in Proceedings of the 6th European Radar Conferenc, pp. 184–187, Amsterdam, The Netherlands, October 2009. View at Scopus
  24. X. Zhuge and A. G. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Transactionson Image Processing, vol. 21, no. 6, pp. 3026–3033, 2012. View at Google Scholar
  25. E. C. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, “Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 8, pp. 812–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 8, pp. 1690–1705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Xie, B. Guo, L. Xu, J. Li, and P. Stoica, “Multistatic adaptive microwave imaging for early breast cancer detection,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1647–1657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Kirshin, G. K. Zhu, M. Popovich, and M. Coates, “Evaluation of the mono-static microwave radar algorithms for breast imaging,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 881–885, Rome, Italy, April 2011. View at Scopus
  29. R. Garg, I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.