Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 692915, 8 pages
http://dx.doi.org/10.1155/2013/692915
Research Article

Recovery Capabilities of Rateless Codes on Simulated Turbulent Terrestrial Free Space Optics Channel Model

Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze Buiding 9, 90128 Palermo, Italy

Received 5 March 2013; Accepted 19 July 2013

Academic Editor: Lorenzo Luini

Copyright © 2013 A. Andò et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Tsukamoto, A. Hashimoto, Y. Aburakawa, and M. Matsumoto, “The case for free space,” IEEE Microwave Magazine, vol. 10, no. 5, pp. 84–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Leitgeb, M. S. Awan, T. Plank et al., “Investigations on free-space optical links within SatNEx II,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), pp. 1707–1711, deu, March 2009. View at Scopus
  3. E. Ciaramella, Y. Arimoto, G. Contestabile et al., “1.28-Tb/s (32 × 40 Gb/s) free-space optical WDM transmission system,” IEEE Photonics Technology Letters, vol. 21, no. 16, pp. 1121–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Chang-Hasnain, “Tunable vCSEL,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 978–987, 2000. View at Publisher · View at Google Scholar
  5. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” OSA Journal of Optical Communications and Networking, vol. 2, no. 6, pp. 178–200, 2003. View at Google Scholar
  6. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Applied Physics Letters, vol. 84, no. 22, pp. 4430–4432, 2004. View at Publisher · View at Google Scholar
  7. M. Cherchi, A. Taormina, A. Busacca et al., “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE Journal of Quantum Electronics, vol. 46, no. 3, pp. 368–376, 2010. View at Publisher · View at Google Scholar
  8. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Optics Letters, vol. 25, no. 23, pp. 1714–1716, 2000. View at Publisher · View at Google Scholar
  9. A. C. Busacca, A. C. Cino, S. Riva-Sanseverino, M. Ravaro, and G. Assanto, “Silica masks for improved surface poling of lithium niobate,” Electronics Letters, vol. 41, pp. 92–94, 2005. View at Publisher · View at Google Scholar
  10. Recommendation ITU-R P, Predications Method Required for Design of Terrestrial Free Space Optical Links, 2007.
  11. R. Nebuloni and C. Capsoni, “EFfect of hydrometeor scattering on optical wave propagation through the atmosphere,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 2513–2517, Rome, Italy, April 2011. View at Scopus
  12. M. Montopoli, F. S. Marzano, and G. Vulpiani, “Analysis and synthesis of raindrop size distribution time series from disdrometer data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 2, pp. 466–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mori, F. S. Marzano, F. Frezza et al., “Model analysis of hydrometeor scattering effects on free space near-infrared links,” in Proceedings of the International Workshop on Optical Wireless Communications (IWOW '12), pp. 1–3, 2012.
  14. H. Yuksel, C. C. Davis, and L. Wasiczko, “Aperture averaging experiment for optimizing receiver design and analyzing turbulence on free space optical communication links,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '05), pp. 743–745, May 2005. View at Scopus
  15. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Applied Optics, vol. 46, no. 11, pp. 2099–2108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M.-A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” Journal of Optical Communications and Networking, vol. 1, no. 6, Article ID 5338662, pp. 580–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Hashmi, A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Analysis of optimal adaptive optics system for hybrid rf-wireless optical communication for maximum efficiency and reliability,” in Proceedings of the 4th IEEE International Conference on Emerging Technologies (ICET '08), pp. 62–67, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Transactions on Wireless Communications, vol. 6, no. 8, pp. 2813–2819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 2, pp. 951–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading,” IEEE Transactions on Communications, vol. 57, no. 11, pp. 3415–3424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels,” Optics Express, vol. 19, no. 14, pp. 13480–13496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Hajjarian, J. Fadlullah, and M. Kavehrad, “MIMO free space optical communications in turbid and turbulent atmosphere,” Journal of Communications, vol. 4, no. 8, pp. 524–532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Anguita, M. A. Neifeld, B. Hildner, and B. Vasic, “Rateless coding on experimental temporally correlated fso channels,” Journal of Lightwave Technology, vol. 28, no. 7, pp. 990–1002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel,” IEEE Photonics Technology Letters, vol. 18, no. 14, pp. 1491–1493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Xu, M. A. Khalighi, and S. Bourennane, “Pulse position modulation for FSO systems: Capacity and channel coding,” in Proceedings of the 10th International Conference on Telecommunications (ConTEL '09), pp. 31–38, June 2009. View at Scopus
  26. A. Andò, S. Mangione, L. Curcio et al., “Rateless codes performance tests on terrestrial FSO time-correlated channel model,” Proceeding of the IEEE of the International Workshop on Optical Wireless (IWOW '12), 2012. View at Google Scholar
  27. I. B. Djordjevic, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation,” Optics Express, vol. 15, no. 16, pp. 10026–10032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Fatima, S. S. Muhammad, and E. Leitgeb, “Adaptive coded modulation for FSO links,” in Proceeding of IEEE the International Syposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP '12), pp. 1–4, 2012.
  29. N. Kumar, V. K. Jain, and S. Kar, “Evaluation of the performance of FSO system using OOK and M-PPM modulation schemes in inter-satellite links with turbo codes,” in Proceedings of the 1st International Conference on Electronics Communication and Computing Technologies (ICECCT '11), pp. 59–63, ind, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Luby, “LT codes,” in Proceedings of the 34rd Annual IEEE Symposium on Foundations of Computer Science, pp. 271–280, can, November 2002. View at Scopus
  31. A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, Raptor Forward Error Correction Scheme for Object Delivery, RFC, 5053—Proposed Standard, IETF, 2007.
  33. M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, RaptorQ Forward Error Correction Scheme for Object Delivery, RFC, 6330—Proposed Standard, IETF,, 2007.
  34. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere, Plenum Press, New York, NY, USA, 1988.
  35. G. R. Osche, Optical Detection Theory for Laser Applications, Wiley, New Jersey, NJ, USA, 2002.
  36. J. W. Goodman, Statistical Optics, Wiley, New York, NY, USA, 1985.
  37. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation Through Random Media, SPIE Press, Bellingham, Wash, USA, 2nd edition, 2005.
  38. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation With Applications, SPIE Press, Bellingham, Wash, USA, 2001.
  39. F. Dios, J. Recolons, A. Rodríguez, and O. Batet, “Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens,” Optics Express, vol. 16, no. 3, pp. 2206–2220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Optics Express, vol. 17, no. 2, pp. 872–887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Nichols, C. C. Olson, J. V. Michalowicz, and F. Bucholtz, “A simple algorithm for generating spectrally colored, non-Gaussian signals,” Probabilistic Engineering Mechanics, vol. 25, no. 3, pp. 315–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. J. C. MacKay, “Fountain codes,” IEE ProceedIngs, vol. 152, no. 6, pp. 1062–1068, 2005. View at Google Scholar
  43. J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, Reed-Solomon Forward Error Correction (FEC) Schemes, RFC, 5510—Standard Tracks, IETF, 2009.
  44. A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends in Communications and Information Theory, vol. 6, no. 3-4, pp. 213–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois, “Enhancing reliable mobile multicasting with RaptorQ FEC,” in Proceedings of the IEEE Symposium on Computers and Communications (ISCC '12), pp. 000082–000087, 2012.