Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2013, Article ID 897158, 7 pages
http://dx.doi.org/10.1155/2013/897158
Research Article

Sparse Cumulants Fitting for Direction-of-Arrival Estimation without Redundancy

Key Lab of Wireless Sensor Networks and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200180, China

Received 8 July 2013; Accepted 3 December 2013

Academic Editor: Yuanxun Ethan Wang

Copyright © 2013 Shuang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986. View at Google Scholar · View at Scopus
  3. R. Roy and T. Kailath, “ESPRIT: estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989. View at Publisher · View at Google Scholar · View at Scopus
  4. B. D. van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988. View at Publisher · View at Google Scholar · View at Scopus
  5. G. C. Carter, “Time delay estimation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 3, pp. 463–470, 1981. View at Google Scholar · View at Scopus
  6. M. Pastorino and A. Randazzo, “A smart antenna system for direction of arrival estimation based on a support vector regression,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 7, pp. 2161–2168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Randazzo, M. A. Abou-Khousa, M. Pastorino, and R. Zoughi, “Direction of arrival estimation based on support vector regression: experimental validation and comparison with MUSIC,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 379–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “A neural network-based smart antenna for multiple source tracking,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 5, pp. 768–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Burintramart, T. K. Sarkar, Y. Zhang, and M. Salazar-Palma, “Nonconventional least squares optimization for DOA estimation,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3 I, pp. 707–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wei, Y. Yuan, and Q. Ling, “DOA estimation using a greedy block coordinate descent algorithm,” IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6382–6394, 2012. View at Google Scholar
  11. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Hyder and K. Mahata, “Direction-of-arrival estimation using a mixed 12,0 norm approximation,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4646–4655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zheng, M. Kaveh, and H. Tsuji, “Sparse spectral fitting for direction of arrival and power estimation,” in Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing (SSP '09), pp. 429–432, Cardiff, Wales, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zheng and M. Kaveh, “Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty,” in Proceedings of the 36th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '11), pp. 2848–2851, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zheng and M. Kaveh, “Sparse spatial spectral estimation: a covariance fitting algorithm, performance and regularization,” IEEE Transactions on Signal Processing, vol. 61, no. 11, pp. 2767–2777, 2013. View at Google Scholar
  18. P. Stoica, P. Babu, and J. Li, “SPICE: a sparse covariance-based estimation method for array processing,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 629–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse representation of array covariance vectors,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4489–4493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Dogan and J. M. Mendel, “Applications of cumulants to array processing—part I: aperture extension and array calibration,” IEEE Transactions on Signal Processing, vol. 43, no. 5, pp. 1200–1216, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Porat and B. Friedlander, “Direction finding algorithms based on high-order statistics,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 2016–2024, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Chevalier, A. Ferréol, and L. Albera, “High-resolution direction finding from higher order statistics: the 2q-MUSIC algorithm,” IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 2986–2997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Li, X. Jiang, W. He, and Y. Wang, “Direction of arrival estimation via sparse representation of fourth order statistics,” in Proceedings of the IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC '13), pp. 1–4, Kunming, China, 2013.
  24. M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 2, pp. 387–392, 1985. View at Google Scholar · View at Scopus
  25. W. J. Zeng, X. L. Li, and X. D. Zhang, “Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices,” IEEE Signal Processing Letters, vol. 16, no. 3, pp. 164–167, 2009. View at Google Scholar
  26. M. Grant, S. Boyd, and Y. Ye, CVX: Matlab Software for Disciplined Convex Programming, CVX Research, Inc., 2008.
  27. J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1–4, pp. 625–653, 1999. View at Google Scholar · View at Scopus
  28. C. Zheng, G. Li, H. Zhang, and X. Wang, “An approach of regularization parameter estimation for sparse signal recovery,” in Proceedings of the IEEE 10th International Conference on Signal Processing (ICSP '10), pp. 385–388, Beijing, China, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to linear inverse problems with multiple measurement vectors,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas and Propagation, vol. 16, no. 2, pp. 172–175, 1968. View at Google Scholar
  31. P. Pal and P. P. Vaidyanathan, “Nested arrays: a novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Stoica and A. B. Gershman, “Maximum-likelihood DOA estimation by data-supported grid search,” IEEE Signal Processing Letters, vol. 6, no. 10, pp. 273–275, 1999. View at Publisher · View at Google Scholar · View at Scopus