Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014 (2014), Article ID 150761, 8 pages
http://dx.doi.org/10.1155/2014/150761
Research Article

Bistatic Scattering due to Hydrometeors on Cochannel Intersystem Communication Links over a Subtropical Path

Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

Received 2 May 2014; Revised 27 August 2014; Accepted 28 August 2014; Published 30 October 2014

Academic Editor: Tat Soon Yeo

Copyright © 2014 P. A. Owolawi and T. Wallingo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Castanet, A. Bolea-Alamañac, and M. Bousquet, “Interference and fade mitigation techniques for ka and Q/V band satellite communication systems,” in Proceedings of the Internet Workshop of COST Actions 272 and 280 on Satellite Communications, from Fade Mitigation to Service Provision, vol. 272, ESTEC, Norwich, UK, 2003.
  2. C. Capsoni, F. Fedi, C. Magistroni, A. Paraboni, and A. Pawlina, “Data and theory for a new model of the horizontal structure of rain cells for propagation applications,” Radio Science, vol. 22, no. 3, pp. 395–404, 1987. View at Publisher · View at Google Scholar · View at Scopus
  3. M. O. Ajewole and J. S. Ojo, “Intersystem interference due to hydrometeor scattering on satellite downlink signals in tropical locations,” African Journal of Science and Technology (AJST) Science and Engineering Series, vol. 6, no. 2, pp. 84–93, 2005. View at Google Scholar
  4. R. K. Crane, “Bistatic scatter from rain,” IEEE Transactions on Antennas and Propagation, vol. AP-22, no. 2, pp. 312–320, 1974. View at Google Scholar · View at Scopus
  5. J. Awaka, “A 3D rain cell model for the study of interference due to hydrometeor scattering,” Journal of the Communications Research Laboratory, vol. 36, no. 147, pp. 13–44, 1989. View at Google Scholar
  6. R. L. Olsen, D. V. Rogers, R. A. Hulays, and M. M. Z. Kharadly, “Interference due to hydrometeor scatter on satellite communication links,” Proceedings of the IEEE, vol. 81, no. 6, pp. 914–922, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Holt, R. McGuinness, D. G. Charlton, P. T. Thompson, and M. J. Mehler, “The development of a model to estimate the bistatic transmission loss associated with intersystem interference,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 10, pp. 1422–1431, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Capsoni and M. D'Amico, “A physically based, simple prediction method for scattering interference,” Radio Science, vol. 32, no. 2, pp. 397–409, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Sitorus and I. A. Glover, “Rapid hydrometeor bistatic scatter calculations using non-orthogonal function expansion,” International Journal of Satellite Communications, vol. 18, no. 3, pp. 207–218, 2000. View at Publisher · View at Google Scholar
  10. M. O. Ajewole, L. B. Kolawole, and G. O. Ajayi, “Evaluation of bistatic intersystem interference due to scattering by hydrometeors on tropical paths,” International Journal of Satellite Communications, vol. 17, no. 5, pp. 337–356, 1999. View at Google Scholar
  11. M. O. Ajewole, L. B. Kolawole, and G. O. Ajayi, “Theoretical study of the effect of different types of tropical rainfall on microwave and millimeter-wave propagation,” Radio Science, vol. 34, no. 5, pp. 1103–1124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Ojo, S. K. Sarkar, and A. T. Adediji, “Intersystem interference on horizontally polarized radio signals in tropical climate,” Indian Journal of Radio and Space Physics, vol. 37, no. 6, pp. 408–413, 2008. View at Google Scholar · View at Scopus
  13. J. S. Ojo and C. I. Joseph-Ojo, “An estimate of interference effect on horizontally polarized signal transmission in the tropical locations: a comparison of rain-cell models,” Progress in Electromagnetics Research C, vol. 3, pp. 67–79, 2008. View at Publisher · View at Google Scholar
  14. G. O. Ajayi and T. E. Owolabi, “Rainfall parameters from disdrometer dropsize measurements at a tropical station,” Annales des Télécommunications, vol. 42, no. 1-2, pp. 3–12, 1987. View at Publisher · View at Google Scholar · View at Scopus
  15. International Telecommunication Union-Radio Communication Bureau, “Attenuation by atmospheric gases in the frequency range 1–350 GHz,” Recommendation P.676-1, 2003.
  16. P. A. Owolawi and S. J. Malinga, “Computation of rain scattering properties at SHF and EHF for radio wave propagation in South Africa,” in Proceedings of the URSI Commission F Triennial Open Symposium (URSI ’13), Ottawa, Canada, 2013.
  17. P. A. Owolawi, “Raindrop size distribution model for the prediction of rain attenuation in Durban,” Piers Online, vol. 7, no. 6, pp. 516–523, 2011. View at Google Scholar
  18. Commission of the European Communities on Cooperation in the Fields of Scientific and Technical Research, “COST project 210 campaign,” Final Report EUR 13407EN-C, Commission of the European Communities on Cooperation in the Fields of Scientific and Technical Research, Brussels, Belgium, 1991. View at Google Scholar
  19. M. O. Fashuyi, P. A. Owolawi, and T. J. Afullo, “Rainfall rate modeling for Los radio systems in south Africa,” SAIEE Africa Research Journal, vol. 97, no. 1, pp. 74–81, 2006. View at Google Scholar · View at Scopus
  20. ITU-R, Water Vapour Surface Density and Total Columnar Content, Recommendation P.836, ITU, Geneva, Switzerland, 2013.
  21. R. S. Ray, “Broadband complex refractive indices of ice and water,” Applied Optics, vol. 11, no. 8, pp. 1836–1844, 1972. View at Google Scholar
  22. http://www.satellite-calculations.com/Satellite/Downlink.htm.
  23. J. S. Ojo and R. C. Okeowo, “The application of 3D rain scatter model on horizontally polarized SHF signal propagation in tropical location,” International Journal of Infrared and Millimeter Waves, vol. 29, no. 12, pp. 1136–1145, 2008. View at Publisher · View at Google Scholar · View at Scopus