Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 171637, 10 pages
http://dx.doi.org/10.1155/2014/171637
Research Article

Voltage Controlled Intertwined Spiral Arrays for Reconfigurable Metasurfaces

1Department of Electronics and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK
2Institute of Electronics, Communications and Information Technology, Queen’s University of Belfast, Belfast BT3 9DT, UK

Received 2 December 2013; Accepted 9 February 2014; Published 20 March 2014

Academic Editor: Douglas H. Werner

Copyright © 2014 A. Vallecchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012. View at Google Scholar
  2. Y. Ra'di, V. S. Asadchy, and S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 9, pp. 4606–4614, 2013. View at Google Scholar
  3. F. C. Seman and R. Cahill, “Performance enhancement of Salisbury screen absorber using resistively loaded spiral FSS,” Microwave and Optical Technology Letters, vol. 53, no. 7, pp. 1538–1541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, Article ID 207402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Physical Review Letters, vol. 101, no. 25, Article ID 253903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Physical Review B, vol. 84, Article ID 205110, 2011. View at Google Scholar
  7. K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239–1245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. M. Austin, M. J. Neve, and G. B. Rowe, “Modeling propagation in multifloor buildings using the FDTD method,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4239–4246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Huang, J. C. Batchelor, and E. A. Parker, “Interwoven convoluted element frequency selective services with wide bandwidths,” Electronics Letters, vol. 42, no. 14, pp. 788–790, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Monorchio, S. Genovesi, E. Carrubba, and G. Manara, “Design of printed FSS for compact and bandwidth enhanced metasurfaces,” in Proceedings of the 1st International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp. 811–814, 2007.
  11. B. Sanz-Izquierdo, E. A. Parker, J. B. Robertson, and J. C. Batchelor, “Singly and dual polarized convoluted frequency selective structures,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 690–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Vallecchi and A. G. Schuchinsky, “Entwined spirals for ultra compact wideband frequency selective surfaces,” in Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP '10), pp. 12–16, Barcelona, Spain, April 2010. View at Scopus
  13. A. Vallecchi and A. G. Schuchinsky, “Entwined planar spirals for artificial surfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 994–997, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Bayraktar, J. P. Turpin, and D. H. Werner, “Nature-inspired optimization of high-impedance metasurfaces with ultrasmall interwoven unit cells,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1563–1566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Parker and A. N. A. El Sheikh, “Convoluted array elements and reduced size unit cells for frequency-selective surfaces,” IEE Proceedings H, vol. 138, no. 1, pp. 19–22, 1991. View at Google Scholar · View at Scopus
  16. E. A. Parker, A. N. A. El Sheikh, and A. C. C. Lima, “Convoluted frequency-selective array elements derived from linear and crossed dipoles,” IEE Proceedings H, vol. 140, no. 5, pp. 378–380, 1993. View at Google Scholar · View at Scopus
  17. T. K. Chang, R. J. Langley, and E. A. Parker, “Active frequency selective surfaces,” IEE Proceedings H, vol. 143, no. 1, pp. 62–66, 1996. View at Google Scholar
  18. A. Vallecchi and A. G. Schuchinsky, “Artificial surfaces formed by tessellations of intertwined spirals,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 1846–1848, Rome, Italy, April 2011. View at Scopus
  19. P. Edenhofer and A. Alpaslan, “Active frequency selective surfaces for antenna applications electronically to control phase distribution and reflective/transmissive amplification,” in Proceedings of the IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, pp. 237–240, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Cahill and E. A. Parker, “Field switching in an enclosure with active FSS screen,” Electronics Letters, vol. 37, no. 4, pp. 244–245, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Tennant and B. Chambers, “A single-layer tuneable microwave absorber using an active FSS,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 1, pp. 46–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. I. Kiani, K. L. Ford, K. P. Esselle, A. R. Weily, C. Panagamuwa, and J. C. Batchelor, “Single-layer bandpass actlve frequency selective surface,” Microwave and Optical Technology Letters, vol. 50, no. 8, pp. 2149–2151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, “Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 2, pp. 581–584, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 9, pp. 3265–3271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. http://www.avagotech.com/pages/en/rf_microwave/diodes/pin/hsmp-3862.
  26. K. W. Kobayashi, A. K. Oki, D. K. Umemoto, S. Claxton, and D. C. Streit, “GaAs HBT PIN diode attenuators and switches,” in Proceedings of the IEEE Microwave Millimeter-Wave Monolithic Circuits Symposium Digest, pp. 349–352, Atlanta, Ga, USA, June 1993. View at Scopus
  27. B. Schoenlinner, A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, “Switchable low-loss RF MEMS Ka-band frequency-selective surface,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 11, pp. 2474–2481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1737–1746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Raedi, S. Nikmehr, and A. Poorziad, “A novel bandwidth enhancement technique for X-band RF mems actuated reconfig-urable reflectarray,” Progress in Electromagnetics Research, vol. 111, pp. 179–196, 2011. View at Google Scholar · View at Scopus
  30. F. A. Tahir, H. Aubert, and E. Girard, “Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters,” Progress in Electromagnetics Research, vol. 100, pp. 1–12, 2010. View at Google Scholar · View at Scopus
  31. A. Vallecchi and A. G. Schuchinsky, “Artificial surfaces of intertwined square spirals: a CPW model,” in Proceedings of the IEEE International Microwave Symposium Digest, pp. 1–3, Montreal, Canada, June 2012. View at Publisher · View at Google Scholar