Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 321081, 8 pages
http://dx.doi.org/10.1155/2014/321081
Research Article

GPU-Accelerated Parallel FDTD on Distributed Heterogeneous Platform

1Research and Development Department, Shanghai Supercomputer Center, Shanghai 201203, China
2School of Electronic Engineering, Xidian University, Xi’an 710071, China

Received 31 October 2013; Revised 27 December 2013; Accepted 10 January 2014; Published 20 February 2014

Academic Editor: Lei Zhao

Copyright © 2014 Ronglin Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302–307, 1966. View at Publisher · View at Google Scholar
  2. R. Ilgner and D. Davidson, “A comparison of the fdtd algorithm implemented on an integrated gpu versus a gpu configured as a co-processor,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA '12), pp. 1046–1049, 2012.
  3. D. K. Price, J. R. Humphrey, and E. J. Kelmelis, “GPU-based accelerated 2D and 3D FDTD solvers,” in Physics and Simulation of Optoelectronic Devices XV, vol. 6468 of Proceedings of the SPIE, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Takada, T. Shimobaba, N. Masuda, and T. Ito, “High-speed FDTD simulation algorithm for GPU with compute unified device architecture,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (APSURSI '09), pp. 1–4, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K.-H. Kim, K. Kim, and Q.-H. Park, “Performance analysis and optimization of three-dimensional FDTD on GPU using roofline model,” Computer Physics Communications, vol. 182, no. 6, pp. 1201–1207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Hadi and S. A. Esmaeili, “Cuda fortran acceleration for the finite-difference time-domain method,” Computer Physics Communications, vol. 184, pp. 1395–1400, 2013. View at Publisher · View at Google Scholar
  7. S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Acceleration of Finite-Difference Time-Domain (FDTD) using Graphics Processor Units (GPU),” in Proceedings of the IEEE MITT-S International Microwave Symposium Digest, vol. 2, pp. 1033–1036, June 2004. View at Scopus
  8. S. Adams, J. Payne, and R. Boppana, “Finite difference time domain (FDTD) simulations using graphics processors,” in Proceedings of the DoD High Performance Computing Modernization Program Users Group Conference, pp. 334–338, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Liuge, L. Kang, and K. Fanmin, “Parallel 3D finite difference time domain simulations on graphics processors with CUDA,” in Proceedings of the International Conference on Computational Intelligence and Software Engineering (CiSE '09), December 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Nagaoka and S. Watanabe, “GPU-based 3D-FDTD computation for electromagnetic field dosimetry,” in Proceedings of the IEEE (AFRICON '11), pp. 1–6, Livingstone, Zambia, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Nagaoka and S. Watanabe, “Accelerating three-dimensional fdtd calculations on gpu clusters for electromagnetic field simulation,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '12), pp. 5691–5694.
  12. K. H. Kim and Q. H. Park, “Overlapping computation and communication of three-dimensional FDTD on a GPU cluster,” Computer Physics Communications, vol. 183, pp. 2364–2369, 2012. View at Publisher · View at Google Scholar
  13. L. Xu, Y. Xu, R. L. Jiang, and D. D. Zhang, “Implementation and optimization of three-dimensional UPML-FDTD algorithm on GPU cluster,” Computer Engineering & Science, vol. 35, p. 160, 2013. View at Google Scholar
  14. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 3rd edition, 1998.
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 3rd edition, 2005.
  16. D. B. Ge and Y. B. Yan, Finite-Difference Time-Domain Method For Electromagnetic Waves, Xidian University Press, 3rd edition, 2011.
  17. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Livesey, J. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, “Impact of gpu memory access patterns on fdtd,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI '12), pp. 1–2, 2012.
  19. Nvdia, CUDA C Programming Guide 13, 2013.
  20. D. De Donno, A. Esposito, L. Tarricone, and L. Catarinucci, “Introduction to GPU computing and CUOA programming: a case study on FOTO,” IEEE Antennas and Propagation Magazine, vol. 52, no. 3, pp. 116–122, 2010. View at Publisher · View at Google Scholar · View at Scopus