Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2014, Article ID 480140, 8 pages
http://dx.doi.org/10.1155/2014/480140
Research Article

Microstrip Antenna Design for Femtocell Coverage Optimization

1Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
2Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia

Received 4 November 2013; Accepted 2 December 2013; Published 3 April 2014

Academic Editor: J.S. Mandeep

Copyright © 2014 Afaz Uddin Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: a survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. López-Pérez, A. Valcarce, G. De La Roche, and J. Zhang, “OFDMA femtocells: a roadmap on interference avoidance,” IEEE Communications Magazine, vol. 47, no. 9, pp. 41–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-Y. Li, M. Macuha, E. S. Sousa, T. Sato, and M. Nanri, “Cognitive interference management in 3G femtocells,” in Proceedings of the 20th Personal, Indoor and Mobile Radio Communications Symposium (PIMRC '09), pp. 1118–1122, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Claussen, L. T. W. Ho, and L. G. Samuel, “Self-optimization of coverage for femtocell deployments,” in Proceedings of the 7th Annual Wireless Telecommunications Symposium (WTS '08), pp. 278–285, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Claussen and F. Pivit, “Femtocell coverage optimization using switched multi-element antennas,” in Proceedings of the International Conference on Communications (ICC '09), June 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Claussen, F. Pivit, and L. T. W. Ho, “Self-optimization of femtocell coverage to minimize the increase in core network mobility signalling,” Bell Labs Technical Journal, vol. 14, no. 2, pp. 155–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Cabedo, J. Anguera, C. Picher, M. Ribó, and C. Puente, “Multiband handset antenna combining a PIFA, slots, and ground plane modes,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2526–2533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Gao, S. Wang, O. Falade, X. Chen, C. Parini, and L. Cuthbert, “Mutual coupling effects on pattern diversity antennas for MIMO femtocells,” International Journal of Antennas and Propagation, vol. 2010, Article ID 756848, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-B. Yan and J. T. Bernhard, “Design of a MIMO dielectric resonator antenna for LTE femtocell base stations,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 438–444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A.-H. Tsai, L.-C. Wang, J.-H. Huang, and R.-B. Hwang, “High-capacity OFDMA femtocells by directional antennas and location awareness,” IEEE Systems Journal, vol. 6, pp. 329–340, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. T. Mobashsher, M. T. Islam, and N. Misran, “Wideband compact antenna with partially radiating coplanar ground plane,” Applied Computational Electromagnetics Society Newsletter, vol. 26, no. 1, pp. 73–81, 2011. View at Google Scholar · View at Scopus
  12. D. M. Pozar, “Microstrip antennas,” Proceedings of the IEEE, vol. 80, no. 1, pp. 79–91, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Garg, Microstrip Antennas Design Handbook, Artech House, 2001.
  14. M. T. Islam, M. Moniruzzaman, N. Misran, and M. N. Shakib, “Curve fitting based particle swarm optimization for UWB patch Antenna,” Journal of Electromagnetic Waves and Applications, vol. 23, no. 17-18, pp. 2421–2432, 2009. View at Google Scholar · View at Scopus
  15. D. Guha and Y. M. Antar, Microstrips and Printed Antennas: New Trends, Techniques and Applications, John Wiley and Sons, 2011.
  16. N. Nasimuddin, Z. N. Chen, and X. Qing, “Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 3821–3828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Matin, B. S. Sharif, and C. C. Tsimenidis, “Probe fed stacked patch antenna for wideband applications,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2385–2388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Tiang, M. T. Islam, N. Misran, and J. S. Mandeep, “Slot loaded circular microstrip antenna with meandered slits,” Journal of Electromagnetic Waves and Applications, vol. 25, no. 13, pp. 1851–1862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Liu, S. W. Cheung, R. Azim, and M. T. Islam, “A compact circular-ring antenna for ultra-wideband applications,” Microwave and Optical Technology Letters, vol. 53, no. 10, pp. 2283–2288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. S. Pan, C. H. Ma, S. H. Shao, and Y. X. Tang, “A 2. 5 GHZ-2. 7 GHz unsymmetrical doherty power amplifier with digital predistortion for LTE-advanced applications,” Advanced Materials Research, vol. 760, pp. 546–550, 2013. View at Google Scholar
  21. E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA and LTE For Mobile Broadband, Academic Press, 2010.
  22. P. Bhartia, I. Bahl, R. Garg, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, Mass, USA, 2000.
  23. J. P. Gilb and C. A. Balanis, “Pulse distortion on multilayer coupled microstrip lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 10, pp. 1620–1628, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Chang, S. A. Long, and W. F. Richards, “An experimental investigation of electrically thick rectangular microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 6, pp. 767–772, 1986. View at Google Scholar · View at Scopus
  25. S. Kibria, M. Islam, and B. Yatim, “Compact dual band RFID reader antenna designed using ramped convergence particle swarm optimization,” Przeglad Elektrotechniczny, vol. 89, no. 4, pp. 199–201, 2013. View at Google Scholar
  26. M. N. Shakib, M. T. Islam, and N. Misran, “Stacked patch antenna with folded patch feed for ultra-wideband application,” IET Microwaves, Antennas and Propagation, vol. 4, no. 10, pp. 1456–1461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. T. Islam, A. T. Mobashsher, and N. Misran, “A novel feeding technique for a dual band microstrip patch antenna,” IEICE Transactions on Communications, vol. 93, no. 9, pp. 2455–2457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Islam, M. R. I. Faruque, and N. Misran, “Specific absorption rate analysis using metal attachment,” Informacije MIDEM, vol. 40, no. 3, pp. 238–240, 2010. View at Google Scholar · View at Scopus
  29. F. Zavosh and J. T. Aberle, “Single and stacked circular microstrip patch antennas backed by a circular cavity,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 7, pp. 746–750, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. K.-L. Wong, S.-W. Su, C.-L. Tang, and S.-H. Yeh, “Internal shorted patch antenna for a UMTS folder-type mobile phone,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 10, pp. 3391–3394, 2005. View at Publisher · View at Google Scholar · View at Scopus