Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015, Article ID 560403, 8 pages
Research Article

Suppression of Specular Reflections by Metasurface with Engineered Nonuniform Distribution of Reflection Phase

1School of Electronics and Information Engineering, Soochow University, Suzhou 215006, China
2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
3Electronic Countermeasure Laboratory, Air Force Early Warning Academy, Wuhan 430019, China

Received 9 November 2014; Accepted 8 January 2015

Academic Editor: Sanming Hu

Copyright © 2015 Xin Mi Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We make preliminary investigations on a new approach to reducing radar cross section (RCS) of conducting objects. This approach employs novel planar metasurfaces characterizing nonuniform distribution of reflection phase. The operation principle of this approach and the design rule of the associated metasurfaces are explained using a simplified theoretical model. We then present a design example of such metasurfaces, in which three-layer stacked square patches with variable sizes are utilized as the reflecting elements. The proposed RCS-reduction approach is verified by both numerical simulations and measurements on the example, under the assumption of normal plane wave incidence. It is observed that, in a fairly wide frequency band (from 3.6 to 5.5 GHz), the presented example is capable of suppressing the specular reflections of conducting plates significantly (by more than 7 dB) for two orthogonal incident polarizations.