Table of Contents
International Journal of Atmospheric Sciences
Volume 2014 (2014), Article ID 512925, 8 pages
http://dx.doi.org/10.1155/2014/512925
Research Article

Modelling Agro-Met Station Observations Using Genetic Algorithm

1Atmospheric and Oceanic Sciences Group, Space Applications Centre (ISRO), Ahmedabad 380015, India
2Crop Inventory and Agro-Ecosystems Division (CAD), ABHG, Space Applications Centre (ISRO), Ahmedabad 380015, India

Received 5 June 2014; Revised 25 August 2014; Accepted 10 September 2014; Published 23 September 2014

Academic Editor: Hui Wang

Copyright © 2014 Prashant Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. G. Szpiro, “Forecasting chaotic time series with genetic algorithms,” Physical Review E, vol. 55, no. 3, pp. 2557–2568, 1997. View at Google Scholar · View at Scopus
  2. A. Alvarez, A. Orfila, and J. Tintore, “DARWIN: an evolutionary program for nonlinear modeling of chaotic time series,” Computer Physics Communications, vol. 136, no. 3, pp. 334–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Basu, A. Sarkar, K. Satheesan, and C. M. Kishtawal, “Predicting wave heights in the north Indian Ocean using genetic algorithm,” Geophysical Research Letters, vol. 32, no. 17, 2005. View at Publisher · View at Google Scholar
  4. S. Basu, K. Satheesan, A. Sarkar, and C. M. Kishtawal, “Ocean surface wind prediction in the north Indian Ocean from in situ and satellite observations using genetic algorithm,” Geophysical Research Letters, vol. 32, no. 24, Article ID L24601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Álvarez, C. López, M. Riera, E. Hernández-García, and J. Tintoré, “Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms,” Geophysical Research Letters, vol. 27, no. 17, pp. 2709–2712, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Sharma, S. Basu, A. Sarkar, and P. K. Pal, “Data-adaptive prediction of sea-surface temperature in the Arabian Sea,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 1, pp. 9–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. Kishtawal, S. Basu, F. Patadia, and P. K. Thapliyal, “Forecasting summer rainfall over India using genetic algorithm,” Geophysical Research Letters, vol. 30, no. 23, pp. 1–9, 2003. View at Google Scholar · View at Scopus
  8. A. Álvarez, A. Orfila, and J. Tintoré, “Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system,” Journal of Geophysical Research C: Oceans, vol. 109, no. 3, 2004. View at Google Scholar · View at Scopus
  9. S. Basu, R. Sharma, N. Agarwal, R. Kumar, and A. Sarkar, “Forecasting of scatterometer-derived wind fields in the North Indian Ocean with a data-adaptive approach,” Journal of Geophysical Research: Oceans, vol. 114, no. C9, 2009. View at Publisher · View at Google Scholar
  10. A. D. Rao, M. Sinha, and S. Basu, “Bay of Bengal wave forecast based on genetic algorithm: a comparison of univariate and multivariate approaches,” Applied Mathematical Modelling, vol. 37, no. 6, pp. 4232–4244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. P. G. Remya, R. Kumar, and S. Basu, “Forecasting tidal currents from tidal levels using genetic algorithm,” Ocean Engineering, vol. 40, pp. 62–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Agrawal and S. C. Mehta, “Weather based forecasting of crop yields, pests and diseases-IASRI models,” Journal of the Indian Society of Agricultural Statistics, vol. 61, no. 2, pp. 255–263, 2007. View at Google Scholar · View at MathSciNet
  13. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Reviews of Modern Physics, vol. 65, no. 4, pp. 1331–1392, 1993. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. B. K. Bhattacharya, C. B. S. Dutt, and J. S. Parihar, “INSAT uplinked Agromet Station—a scientific tool with a network of automated micrometeorological measurements for soil-canopy-atmosphere feedback studies,” in ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture, 2009.
  15. R. Sharma, A. Sarkar, N. Agarwal, R. Kumar, and S. Basu, “A new technique for forecasting surface wind field from scatterometer observations: a case study for the Arabian Sea,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 3, pp. 613–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. Rand and L. S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366–381, Springer, New York, NY, USA, 1981. View at Publisher · View at Google Scholar · View at MathSciNet