Table of Contents
International Journal of Bacteriology
Volume 2014, Article ID 707463, 6 pages
http://dx.doi.org/10.1155/2014/707463
Research Article

Detection of Q Fever Specific Antibodies Using Recombinant Antigen in ELISA with Peroxidase Based Signal Amplification

Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA

Received 18 November 2013; Revised 4 February 2014; Accepted 6 February 2014; Published 12 March 2014

Academic Editor: Sam R. Telford

Copyright © 2014 Hua-Wei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Anderson, B. Smoak, E. Shuping, C. Ockenhouse, and B. Petruccelli, “Q fever and the US military,” Emerging Infectious Diseases, vol. 11, no. 8, pp. 1320–1322, 2005. View at Google Scholar · View at Scopus
  2. C. Leung-Shea and P. J. Danaher, “Q fever in members of the United States armed forces returning from Iraq,” Clinical Infectious Diseases, vol. 43, no. 8, pp. e77–e82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. D. Gleeson, C. F. Decker, M. D. Johnson, J. D. Hartzell, and J. R. Mascola, “Q Fever in US Military Returning from Iraq,” The American Journal of Medicine, vol. 120, no. 9, pp. e11–e12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Faix, D. J. Harrison, M. S. Riddle et al., “Outbreak of Q fever among US military in Western Iraq, June-July 2005,” Clinical Infectious Diseases, vol. 46, no. 7, pp. e65–e68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Hartzell, T. Gleeson, S. Scoville, R. F. Massung, G. Wortmann, and G. J. Martin, “Practice guidelines for the diagnosis and management of patients with Q Fever by the Armed Forces Infectious Diseases Society,” Military Medicine, vol. 177, no. 5, pp. 484–494, 2012. View at Google Scholar · View at Scopus
  6. Center for Disease Control and Prevention, “Diagnosis and management of Q fever,” Morbidity and Mortality Weekly Report, vol. 62, no. 3, pp. 1–23, 2013. View at Google Scholar
  7. J.-M. Rolain, A. Boulos, M.-N. Mallet, and D. Raoult, “Correlation between ratio of serum doxycycline concentration to MIC and rapid decline of antibody levels during treatment of Q fever endocarditis,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 7, pp. 2673–2676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P.-E. Fournier and D. Raoult, “Comparison of PCR and serology assays for early diagnosis of acute Q fever,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5094–5098, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Schneeberger, M. H. A. Hermans, E. J. van Hannen, J. J. A. Schellekens, A. C. A. P. Leenders, and P. C. Wever, “Real-time PCR with serum samples is indispensable for early diagnosis of acute Q fever,” Clinical and Vaccine Immunology, vol. 17, no. 2, pp. 286–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Turra, G. Chang, D. Whybrow, G. Higgins, and M. Qiao, “Diagnosis of acute Q fever by PCR on sera during a recent outbreak in rural South Australia,” Annals of the New York Academy of Sciences, vol. 1078, pp. 566–569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P.-E. Fournier, T. J. Marrie, and D. Raoult, “Diagnosis of Q fever,” Journal of Clinical Microbiology, vol. 36, no. 7, pp. 1823–1834, 1998. View at Google Scholar · View at Scopus
  12. G. Dupuis, O. Peter, and M. Peacock, “Immunoglobulin responses in acute Q fever,” Journal of Clinical Microbiology, vol. 22, no. 4, pp. 484–487, 1985. View at Google Scholar · View at Scopus
  13. M. G. Peacock, R. N. Philip, J. C. Williams, and R. S. Faulkner, “Serological evaluation of Q fever in humans: enhanced phase I titers of immunoglobulins G and A are diagnostic for Q fever endocarditis,” Infection and Immunity, vol. 41, no. 3, pp. 1089–1098, 1983. View at Google Scholar · View at Scopus
  14. O. Peter, G. Dupuis, W. Burgdorfer, and M. Peacock, “Evaluation of the complement fixation and indirect immunofluorescence tests in the early diagnosis of primary Q fever,” European Journal of Clinical Microbiology, vol. 4, no. 4, pp. 394–396, 1985. View at Google Scholar · View at Scopus
  15. O. Peter, G. Dupuis, M. G. Peacock, and W. Burgdorfer, “Comparison of enzyme-linked immunosorbent assay and complement fixation and indirect fluorescent-antibody tests for detection of Coxiella burnetii antibody,” Journal of Clinical Microbiology, vol. 25, no. 6, pp. 1063–1067, 1987. View at Google Scholar · View at Scopus
  16. I. J. Uhaa, D. B. Fishbein, J. G. Olson, C. C. Rives, D. M. Waag, and J. C. Williams, “Evaluation of specificity of indirect enzyme-linked immunosorbent assay for diagnosis of human Q fever,” Journal of Clinical Microbiology, vol. 32, no. 6, pp. 1560–1565, 1994. View at Google Scholar · View at Scopus
  17. J. C. Williams, L. A. Thomas, and M. G. Peacock, “Identification of phase-specific antigenic fractions of Coxiella burnetii by enzyme-linked immunosorbent assay,” Journal of Clinical Microbiology, vol. 24, no. 6, pp. 929–934, 1986. View at Google Scholar · View at Scopus
  18. H. T. Dupont, X. Thirion, and D. Raoult, “Q fever serology: cutoff determination for microimmunofluorescence,” Clinical and Diagnostic Laboratory Immunology, vol. 1, no. 2, pp. 189–196, 1994. View at Google Scholar · View at Scopus
  19. O. Peter, G. Dupuis, D. Bee, R. Luthy, J. Nicolet, and W. Burgdorfer, “Enzyme-linked immunosorbent assay for diagnosis of chronic Q fever,” Journal of Clinical Microbiology, vol. 26, no. 10, pp. 1978–1982, 1988. View at Google Scholar · View at Scopus
  20. N. Schmeer, “Enzyme-linked immunosorbent assay (ELISA) for the demonstration of IgG1, IgG2 and IgM antibodies in bovine Q fever infection,” Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, vol. 259, no. 1, pp. 20–34, 1985. View at Google Scholar · View at Scopus
  21. A. Setiyono, M. Ogawa, Y. Cai, S. Shiga, T. Kishimoto, and I. Kurane, “New criteria for immunofluorescence assay for Q fever diagnosis in Japan,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5555–5559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. C. Williams and S. Stewart, “Identification of immunogenic proteins of Coxiella burnetii phase variants,” in Microbiology, L. Leive and D. Schlessinger, Eds., pp. 257–262, American Society for Microbiology, Washington, DC, USA, 9th edition, 1984. View at Google Scholar
  23. H. To, A. Hotta, G. Q. Zhang et al., “Antigenic characteristics of polypeptides of Coxiella burnetii isolates,” Microbiology and Immunology, vol. 42, no. 2, pp. 81–85, 1998. View at Google Scholar · View at Scopus
  24. L. R. Hendrix, L. P. Mallavia, and J. E. Samuel, “Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1,” Infection and Immunity, vol. 61, no. 2, pp. 470–477, 1993. View at Google Scholar · View at Scopus
  25. Y.-Y. Mo, N. P. Cianciotto, and L. P. Mallavia, “Molecular cloning of a Coxiella burnetii gene encoding a macrophage infectivity potentiator (Mip) analogue,” Microbiology, vol. 141, no. 11, pp. 2861–2871, 1995. View at Google Scholar · View at Scopus
  26. S. Varghees, K. Kiss, G. Frans, O. Braha, and J. E. Samuel, “Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii,” Infection and Immunity, vol. 70, no. 12, pp. 6741–6750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. H. Vodkin and J. C. Williams, “A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli,” Journal of Bacteriology, vol. 170, no. 3, pp. 1227–1234, 1988. View at Google Scholar · View at Scopus
  28. A. Papadioti, S. Markoutsa, I. Vranakis et al., “A proteomic approach to investigate the differential antigenic profile of two Coxiella burnetii strains,” Journal of Proteomics, vol. 74, no. 7, pp. 1150–1159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Skultety, M. Hajduch, G. Flores-Ramirez et al., “Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever,” Journal of Proteomics, vol. 74, no. 10, pp. 1974–1984, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Vigil, R. Ortega, R. Nakajima-Sasaki et al., “Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray,” Proteomics, vol. 10, no. 12, pp. 2259–2269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Vigil, C. Chen, A. Jain et al., “Profiling the humoral immune response of acute and chronic Q fever by protein microarray,” Molecular and Cellular Proteomics, vol. 10, no. 10, Article ID M110.006304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. F. W. Studier and B. A. Moffatt, “Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes,” Journal of Molecular Biology, vol. 189, no. 1, pp. 113–130, 1986. View at Google Scholar · View at Scopus
  33. H.-W. Chen, Z. Zhang, E. Huber et al., “Identification of cross-reactive epitopes on the conserved 47-kilodalton antigen of Orientia tsutsugamushi and human serine protease,” Infection and Immunity, vol. 77, no. 6, pp. 2311–2319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Fiset , “Phase variation of Rickettsia (Coxiella) burneti; study of the antibody response in guinea pigs and rabbits,” Canadian Journal of Microbiology, vol. 3, no. 3, pp. 435–445, 1957. View at Google Scholar · View at Scopus
  35. P. Fiset and R. A. Ormsbee, “The antibody response to antigens of Coxiella burnetii,” Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, vol. 206, no. 3, pp. 321–329, 1968. View at Google Scholar
  36. P. Fiset, R. A. Ormsbee, R. Silberman, M. Peacock, and S. H. Spielman, “A microagglutination technique for detection and measurement of rickettsial antibodies,” Acta Virologica, vol. 13, no. 1, pp. 60–66, 1969. View at Google Scholar · View at Scopus
  37. M. G. Stoker and P. Fiset, “Phase variation of the Nine Mile and other strains of Rickettsia burneti,” Canadian Journal of Microbiology, vol. 2, no. 3, pp. 310–321, 1956. View at Google Scholar · View at Scopus
  38. G. Q. Zhang, H. To, T. Yamaguchi, H. Fukushi, and K. Hirai, “Differentiation of Coxiella burnetii by sequence analysis of the gene (com1) encoding a 27-kDa outer membrane protein,” Microbiology and Immunology, vol. 41, no. 11, pp. 871–877, 1997. View at Google Scholar · View at Scopus
  39. G. Q. Zhang, A. Hotta, T. Ho, T. Yamaguchi, H. Fukushi, and K. Hirai, “Evaluation of a recombinant 27-kDa outer membrane protein of Coxiella burnetii as an immunodiagnostic reagent,” Microbiology and Immunology, vol. 42, no. 6, pp. 423–428, 1998. View at Publisher · View at Google Scholar