Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2011, Article ID 352182, 11 pages
http://dx.doi.org/10.4061/2011/352182
Review Article

Molecular Mechanisms of Trastuzumab Resistance in HER2 Overexpressing Breast Cancer

Immunobiology Department, Institute of Oncology A. H. Roffo, University of Buenos Aires, Avenida San Martín 5481, CP1417 DTB Buenos Aires, Argentina

Received 30 April 2011; Accepted 1 July 2011

Academic Editor: Alejandro J. Urtreger

Copyright © 2011 Gabriel L. Fiszman and María A. Jasnis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Cancer Incidence and Mortality Worldwide: IARC,” Globocan 2008, IARC CancerBasehttp://globocan.iarc.fr.
  2. T. Sørlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001. View at Publisher · View at Google Scholar
  3. D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Hu, C. Fan, D. S. Oh et al., “The molecular portraits of breast tumors are conserved across microarray platforms,” BMC Genomics, vol. 7, article no. 96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. P. Zhou, M. C. T. Hu, S. A. Miller et al., “HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF- κB pathway,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 8027–8031, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Olayioye, R. M. Neve, H. A. Lane, and N. E. Hynes, “The ErbB signaling network: receptor heterodimerization in development and cancer,” EMBO Journal, vol. 19, no. 13, pp. 3159–3167, 2000. View at Google Scholar · View at Scopus
  7. P. R. Pohlmann, I. A. Mayer, and R. Mernaugh, “Resistance to trastuzumab in breast cancer,” Clinical Cancer Research, vol. 15, no. 24, pp. 7479–7491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. A. Lane, I. Beuvink, A. B. Motoyama, J. M. Daly, R. M. Neve, and N. E. Hynes, “ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency,” Molecular and Cellular Biology, vol. 20, no. 9, pp. 3210–3223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Schlessinger, “Common and distinct elements in cellular signaling via EGF and FGF receptor,” Science, vol. 306, no. 5701, pp. 1506–1507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. N. E. Hynes and H. A. Lane, “ERBB receptors and cancer: the complexity of targeted inhibitors,” Nature Reviews Cancer, vol. 5, no. 5, pp. 341–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. S. Salomon, R. Brandt, F. Ciardiello, and N. Normanno, “Epidermal growth factor-related peptides and their receptors in human malignancies,” Critical Reviews in Oncology/Hematology, vol. 19, no. 3, pp. 183–232, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 182–191, 1987. View at Google Scholar · View at Scopus
  13. J. Jaehne, C. Urmacher, H. T. Thaler, H. Friedlander-Klar, C. Cordon-Cardo, and H. J. Meyer, “Expression of Her2/neu oncogene product p185 in correlation to clinicopathological and prognostic factors of gastric carcinoma,” Journal of Cancer Research and Clinical Oncology, vol. 118, no. 6, pp. 474–479, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Vermeij, E. Teugels, C. Bourgain et al., “Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers,” BMC Cancer, vol. 8, article no. 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Cornolti, M. Ungari, M. L. Morassi et al., “Amplification and overexpression of Her2/neu gene and HER2/neu protein in salivary duct carcinoma of the parotid gland,” Archives of Otolaryngology - Head and Neck Surgery, vol. 133, no. 10, pp. 1031–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Hudziak, J. Schlessinger, and A. Ullrich, “Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 20, pp. 7159–7163, 1987. View at Google Scholar · View at Scopus
  17. A. Choudhury and R. Kiessling, “Her-2/Neu as a paradigm of a tumor-specific target for therapy,” Breast Disease, vol. 20, pp. 25–31, 2004. View at Google Scholar · View at Scopus
  18. D. S. Leonard, A. D. K. Hill, L. Kelly, B. Dijkstra, E. McDermott, and N. J. O'Higgins, “Anti-human epidermal growth factor receptor 2 monoclonal antibody therapy for breast cancer,” British Journal of Surgery, vol. 89, no. 3, pp. 262–271, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. F. Press, D. J. Slamon, K. J. Flom, J. Park, J. Y. Zhou, and L. Bernstein, “Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens,” Journal of Clinical Oncology, vol. 20, no. 14, pp. 3095–3105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Baselga and S. M. Swain, “Novel anticancer targets: revisiting ERBB2 and discovering ERBB3,” Nature Reviews Cancer, vol. 9, no. 7, pp. 463–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. B. Motoyama, N. E. Hynes, and H. A. Lane, “The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides,” Cancer Research, vol. 62, no. 11, pp. 3151–3158, 2002. View at Google Scholar · View at Scopus
  22. A. M. V. Petit, J. Rak, M. C. Hung et al., “Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors,” American Journal of Pathology, vol. 151, no. 6, pp. 1523–1530, 1997. View at Google Scholar · View at Scopus
  23. P. Carter, L. Presta, C. M. Gorman et al., “Humanization of an anti-p185(HER2) antibody for human cancer therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4285–4289, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. A. D. Seidman, D. Berry, C. Cirrincione et al., “Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of cancer and leukemia group B protocol 9840,” Journal of Clinical Oncology, vol. 26, no. 10, pp. 1642–1649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Nahta and F. J. Esteva, “HER2 therapy: molecular mechanisms of trastuzumab resistance,” Breast Cancer Research, vol. 8, no. 6, article no. 215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. L. Vogel, M. A. Cobleigh, D. Tripathy et al., “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 719–726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Cobleigh, C. L. Vogel, D. Tripathy et al., “Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease,” Journal of Clinical Oncology, vol. 17, no. 9, pp. 2639–2648, 1999. View at Google Scholar · View at Scopus
  28. E. H. Romond, E. A. Perez, J. Bryant et al., “Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer,” New England Journal of Medicine, vol. 353, no. 16, pp. 1673–1684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. E. A. Perez, M. M. Reinholz, D. W. Hillman et al., “HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial,” Journal of Clinical Oncology, vol. 28, no. 28, pp. 4307–4315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Valabrega, F. Montemurro, and M. Aglietta, “Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer,” Annals of Oncology, vol. 18, no. 6, pp. 977–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Baselga, J. Albanell, M. A. Molina, and J. Arribas, “Mechanism of action of trastuzumab and scientific update,” Seminars in Oncology, vol. 28, no. 5, pp. 4–11, 2001. View at Google Scholar · View at Scopus
  32. H. A. Lane, A. B. Motoyama, I. Beuvink, and N. E. Hynes, “Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling,” Annals of Oncology, vol. 12, no. 1, pp. S21–S22, 2001. View at Google Scholar · View at Scopus
  33. Y. Nagata, K. H. Lan, X. Zhou et al., “PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients,” Cancer Cell, vol. 6, no. 2, pp. 117–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. T. A. Christianson, J. K. Doherty, Y. J. Lin et al., “NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer,” Cancer Research, vol. 58, no. 22, pp. 5123–5129, 1998. View at Google Scholar · View at Scopus
  35. M. A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, and J. Baselga, “Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells,” Cancer Research, vol. 61, no. 12, pp. 4744–4749, 2001. View at Google Scholar · View at Scopus
  36. M. N. Fornier, A. D. Seidman, M. K. Schwartz et al., “Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry and fluorescence in situ hybridization and with response rate,” Annals of Oncology, vol. 16, no. 2, pp. 234–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Izumi, L. Xu, E. Di Tomaso, D. Fukumura, and R. K. Jain, “Herceptin acts as an anti-angiogenic cocktail,” Nature, vol. 416, no. 6878, pp. 279–280, 2002. View at Google Scholar · View at Scopus
  38. X. F. Wen, G. Yang, W. Mao et al., “HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy,” Oncogene, vol. 25, no. 52, pp. 6986–6996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Hommelgaard, M. Lerdrup, and B. Van Deurs, “Association with Membrane Protrusions Makes ErbB2 an Internalization-resistant Receptor,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 1557–1567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Cuello, S. A. Ettenberg, A. S. Clark et al., “Down-regulation of the erbB-2 receptor by trastuzumab (Herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2,” Cancer Research, vol. 61, no. 12, pp. 4892–4900, 2001. View at Google Scholar · View at Scopus
  41. T. Ben-Kasus, B. Schechter, S. Lavi, Y. Yarden, and M. Sela, “Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3294–3299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. C. Portera, J. M. Walshe, D. R. Rosing et al., “Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with trastuzumab-insensitive human epidermal growth factor receptor 2- Positive metastatic breast cancer,” Clinical Cancer Research, vol. 14, no. 9, pp. 2710–2716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. I. Spiridon, S. Guinn, and E. S. Vitetta, “A comparison of the in vitro and in vivo activities of IgG and F(ab')2 fragments of a mixture of three monoclonal anti-Her-2 antibodies,” Clinical Cancer Research, vol. 10, no. 10, pp. 3542–3551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Stockmeyer, T. Beyer, W. Neuhuber et al., “Polymorphonuclear Granulocytes Induce Antibody-Dependent Apoptosis in Human Breast Cancer Cells,” Journal of Immunology, vol. 171, no. 10, pp. 5124–5129, 2003. View at Google Scholar · View at Scopus
  45. R. Gennari, S. Menard, F. Fagnoni et al., “Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2,” Clinical Cancer Research, vol. 10, no. 17, pp. 5650–5655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. R. J. Pietras, B. M. Fendly, V. R. Chazin, M. D. Pegram, S. B. Howell, and D. J. Slamon, “Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells,” Oncogene, vol. 9, no. 7, pp. 1829–1838, 1994. View at Google Scholar · View at Scopus
  47. R. J. Pietras, J. C. Poen, D. Gallardo, P. N. Wongvipat, J. J. Lee, and D. J. Slamon, “Monoclonal antibody to HER-2/neu receptor modulates repair of radiation- induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene,” Cancer Research, vol. 59, no. 6, pp. 1347–1355, 1999. View at Google Scholar · View at Scopus
  48. R. Nahta, D. Yu, M. C. Hung, G. N. Hortobagyi, and F. J. Esteva, “Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer,” Nature Clinical Practice Oncology, vol. 3, no. 5, pp. 269–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Molina, R. Sáez, E. E. Ramsey et al., “NH2-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer,” Clinical Cancer Research, vol. 8, no. 2, pp. 347–353, 2002. View at Google Scholar · View at Scopus
  50. M. Scaltriti, F. Rojo, A. Ocaña et al., “Expression of p95HER2, a truncated form of the HER2 receptor, and response to Anti-HER2 therapies in breast cancer,” Journal of the National Cancer Institute, vol. 99, no. 8, pp. 628–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Lennon, C. Barton, L. Banken, L. Gianni, M. Marty, and J. Baselga, “Utility of serum HER2 extracellular domain assessment in clinical decision making: pooled analysis of four trials of trastuzumab in metastatic breast cancer,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1685–1693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. K. L. Carraway and N. Idris, “Regulation of sialomucin complex/Muc4 in the female rat reproductive tract,” Biochemical Society Transactions, vol. 29, no. 2, pp. 162–166, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. K. L. Carraway, S. A. Price-Schiavi, M. Komatsu, S. Jepson, A. Perez, and C. A. Carothers Carraway, “Muc4/sialomucin complex in the mammary gland and breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 6, no. 3, pp. 323–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Mahanta, S. P. Fessles, J. Park, and C. Bamdad, “A minimal fragments of MUC1 mediates growth of cancer cells,” PLoS ONE, vol. 3, no. 4, Article ID e2054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. S. A. Price-Schiavi, S. Jepson, P. Li et al., “Rat MUC4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance,” International Journal of Cancer, vol. 99, no. 6, pp. 783–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Nagy, E. Friedländer, M. Tanner et al., “Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing cancer cell line,” Cancer Research, vol. 65, no. 2, pp. 473–482, 2005. View at Google Scholar · View at Scopus
  57. L. Y. W. Bourguignon, H. Zhu, B. Zhou, F. Diedrich, P. A. Singleton, and M. C. Hung, “Hyaluronan Promotes CD44v3-Vav2 Interaction with Grb2-p185HER2 and Induces Rac1 and Ras Signaling during Ovarian Tumor Cell Migration and Growth,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48679–48692, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Ghatak, S. Misra, and B. P. Toole, “Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38013–38020, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. P. P. Pandolfi, “Breast cancer - Loss of PTEN predicts resistance to treatment,” New England Journal of Medicine, vol. 351, no. 22, pp. 2337–2338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Simpson and R. Parsons, “PTEN: life as a tumor suppressor,” Experimental Cell Research, vol. 264, no. 1, pp. 29–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. F. M. Yakes, W. Chinratanalab, C. A. Ritter, W. King, S. Seelig, and C. L. Arteaga, “Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action,” Cancer Research, vol. 62, no. 14, pp. 4132–4141, 2002. View at Google Scholar · View at Scopus
  62. K. Berns, H. M. Horlings, B. T. Hennessy et al., “A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer,” Cancer Cell, vol. 12, no. 4, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Dave, I. Migliaccio, M. C. Gutierrez et al., “Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2 - Overexpressing locally advanced breast cancers,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 166–173, 2011. View at Publisher · View at Google Scholar
  64. C. Jimenez, D. R. Jones, P. Rodríguez-Viciana et al., “Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase,” EMBO Journal, vol. 17, no. 3, pp. 743–753, 1998. View at Publisher · View at Google Scholar
  65. A. J. Philp, I. G. Campbell, C. Leet et al., “The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors,” Cancer Research, vol. 61, no. 20, pp. 7426–7429, 2001. View at Google Scholar · View at Scopus
  66. L. H. Saal, K. Holm, M. Maurer et al., “PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma,” Cancer Research, vol. 65, no. 7, pp. 2554–2559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. T. T. Junttila, R. W. Akita, K. Parsons et al., “Ligand-Independent HER2/HER3/PI3K Complex Is Disrupted by Trastuzumab and Is Effectively Inhibited by the PI3K Inhibitor GDC-0941,” Cancer Cell, vol. 15, no. 5, pp. 429–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Kataoka, T. Mukohara, H. Shimada, N. Saijo, M. Hirai, and H. Minami, “Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines,” Annals of Oncology, vol. 21, no. 2, pp. 255–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Dunlap, C. Le, A. Shukla et al., “Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma,” Breast Cancer Research and Treatment, vol. 120, no. 2, pp. 409–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Stemke-Hale, A. M. Gonzalez-Angulo, A. Lluch et al., “An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer,” Cancer Research, vol. 68, no. 15, pp. 6084–6091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Brugge, M. C. Hung, and G. B. Mills, “A New Mutational aktivation in the PI3K Pathway,” Cancer Cell, vol. 12, no. 2, pp. 104–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. P. H. Tseng, Y. C. Wang, S. C. Weng et al., “Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor,” Molecular Pharmacology, vol. 70, no. 5, pp. 1534–1541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. R. M. Neve, H. Sutterlüty, N. Pullen et al., “Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells,” Oncogene, vol. 19, no. 13, pp. 1647–1656, 2000. View at Google Scholar · View at Scopus
  74. R. Nahta, T. Takahashi, N. T. Ueno, M. C. Hung, and F. J. Esteva, “P27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells,” Cancer Research, vol. 64, no. 11, pp. 3981–3986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. X. F. Le, F. X. Claret, A. Lammayot et al., “The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 23441–23450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Scaltriti, P. J. Eichhorn, J. Cortés et al., “Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3761–3766, 2011. View at Publisher · View at Google Scholar
  77. X. F. Le, F. Pruefer, and R. C. Bast, “HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways,” Cell Cycle, vol. 4, no. 1, pp. 87–95, 2005. View at Google Scholar · View at Scopus
  78. S. Diermeier, G. Horváth, R. Knuechel-Clarke, F. Hofstaedter, J. Szöllosi, and G. Brockhoff, “Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation,” Experimental Cell Research, vol. 304, no. 2, pp. 604–619, 2005. View at Publisher · View at Google Scholar
  79. G. Brockhoff, B. Heckel, E. Schmidt-Bruecken et al., “Differential impact of Cetuximab, Pertuzumab and Trastuzumab on BT474 and SK-BR-3 breast cancer cell proliferation,” Cell Proliferation, vol. 40, no. 4, pp. 488–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. L. M. Bender and R. Nahta, “Her2 cross talk and therapeutic resistance in breast cancer,” Frontiers in Bioscience, vol. 13, no. 10, pp. 3906–3912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Tzahar, H. Waterman, X. Chen et al., “A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5276–5287, 1996. View at Google Scholar · View at Scopus
  82. S. T. Lee-Hoeflich, L. Crocker, E. Yao et al., “A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy,” Cancer Research, vol. 68, no. 14, pp. 5878–5887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Holbro, R. R. Beerli, F. Maurer, M. Koziczak, C. F. Barbas, and N. E. Hynes, “The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: erbB2 requires ErbB3 to drive breast tumor cell proliferation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8933–8938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. T. S. Wehrman, W. J. Raab, C. L. Casipit, R. Doyonnas, J. H. Pomerantz, and H. M. Blau, “A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19063–19068, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Valabrega, F. Montemurro, I. Sarotto et al., “TGFα expression impairs Trastuzumab-induced HER2 downregulation,” Oncogene, vol. 24, no. 18, pp. 3002–3010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. A. G. Robinson, D. Turbin, T. Thomson et al., “Molecular predictive factors in patients receiving trastuzumab-based chemotherapy for metastatic disease,” Clinical Breast Cancer, vol. 7, no. 3, pp. 254–261, 2006. View at Google Scholar · View at Scopus
  87. Y. Lu, X. Zi, Y. Zhao, D. Mascarenhas, and M. Pollak, “Insulin-like growth factor-I receptor signaling and resistance to transtuzumab (Herceptin),” Journal of the National Cancer Institute, vol. 93, no. 24, pp. 1852–1857, 2001. View at Google Scholar · View at Scopus
  88. R. Nahta, L. X. H. Yuan, B. Zhang, R. Kobayashi, and F. J. Esteva, “Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells,” Cancer Research, vol. 65, no. 23, pp. 11118–11128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Lu, X. Zi, and M. Pollak, “Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (herceptin) on SKBR3 breast cancer cells,” International Journal of Cancer, vol. 108, no. 3, pp. 334–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Yen, X. L. You, A. E. Al Moustafa et al., “Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis,” Oncogene, vol. 19, no. 31, pp. 3460–3469, 2000. View at Google Scholar · View at Scopus
  91. D. L. Shattuck, J. K. Miller, K. L. Carraway, and C. Sweeney, “Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells,” Cancer Research, vol. 68, no. 5, pp. 1471–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. Engelman, K. Zejnullahu, T. Mitsudomi et al., “MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling,” Science, vol. 316, no. 5827, pp. 1039–1043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Jones, “Combining trastuzumab (Herceptin®) with hormonal therapy in breast cancer: what can be expected and why?” Annals of Oncology, vol. 14, no. 12, pp. 1697–1704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. S. R. D. Johnston and M. Dowsett, “Aromatase inhibitors for breast cancer: lessons from the laboratory,” Nature Reviews Cancer, vol. 3, no. 11, pp. 821–831, 2003. View at Google Scholar · View at Scopus
  95. A. Ocaña, J. J. Cruz, and A. Pandiella, “Trastuzumab and antiestrogen therapy: focus on mechanisms of action and resistance,” American Journal of Clinical Oncology: Cancer Clinical Trials, vol. 29, no. 1, pp. 90–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Xia, S. Bacus, P. Hegde et al., “A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7795–7800, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. J. Proietti, C. Rosemblit, W. Beguelin et al., “Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth,” Molecular and Cellular Biology, vol. 29, no. 5, pp. 1249–1265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Yamauchi, N. Yamauchi, K. Ueki et al., “Constitutive tyrosine phosphorylation of ErbB-2 via Jak2 by autocrine secretion of prolactin in human breast cancer,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33937–33944, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Keyomarsi, S. L. Tucker, T. A. Buchholz et al., “Cyclin E and survival in patients with breast cancer,” New England Journal of Medicine, vol. 347, no. 20, pp. 1566–1575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. E. A. Mittendorf, Y. Liu, S. L. Tucker et al., “A novel interaction between HER2/neu and cyclin e in breast cancer,” Oncogene, vol. 29, no. 27, pp. 3896–3907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. M. A. Rivas, M. Tkach, W. Beguelin et al., “Transactivation of ErbB-2 induced by tumor necrosis factor α promotes NF-κB activation and breast cancer cell proliferation,” Breast Cancer Research and Treatment, vol. 122, no. 1, pp. 111–124, 2010. View at Publisher · View at Google Scholar
  102. W. Jelkmann, “Erythropoietin: structure, control of production, and function,” Physiological Reviews, vol. 72, no. 2, pp. 449–489, 1992. View at Google Scholar · View at Scopus
  103. J. E. Damen, L. Liu, R. L. Cutler, and G. Krystal, “Erythropoietin stimulates the tyrosine phosphorylation of Shc and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein,” Blood, vol. 82, no. 8, pp. 2296–2303, 1993. View at Google Scholar · View at Scopus
  104. K. Liang, F. J. Esteva, C. Albarracin et al., “Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-Mediated Src activation and PTEN inactivation,” Cancer Cell, vol. 18, no. 5, pp. 423–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Dokmanovic, D. S. Hirsch, Y. Shen, and J. W. Wen, “Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer,” Molecular Cancer Therapeutics, vol. 8, no. 6, pp. 1557–1569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. P. L. Menna, G. A. Cardama, M. J. Comin, D. F. Alonso, and D. E. Gomez, “Rho GTPases as therapeutic targets in cancer and other human diseases,” Medicina, vol. 70, no. 6, pp. 555–564, 2010. View at Google Scholar · View at Scopus
  107. T. E. Kute, L. Savage, J. R. Stehle Jr. et al., “Breast tumor cells isolated from in vitro resistance to trastuzumab remain sensitive to trastuzumab anti-tumor effects in vivo and to ADCC killing,” Cancer immunology, immunotherapy, vol. 58, no. 11, pp. 1887–1896, 2009. View at Publisher · View at Google Scholar
  108. H. R. Koene, M. Kleijer, J. Algra, D. Roos, A. E. G. K. Von Dem Borne, and M. De Haas, “FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FCγRIIIa, independently of the FCγRIIIa-48L/R/H phenotype,” Blood, vol. 90, no. 3, pp. 1109–1114, 1997. View at Google Scholar · View at Scopus
  109. R. L. Shields, A. K. Namenuk, K. Hong et al., “High Resolution Mapping of the Binding Site on Human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and Design of IgG1 Variants with Improved Binding to the FcγR,” Journal of Biological Chemistry, vol. 276, no. 9, pp. 6591–6604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Musolino, N. Naldi, B. Bortesi et al., “Immunoglobulin g fragment c receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer,” Journal of Clinical Oncology, vol. 26, no. 11, pp. 1789–1796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Barok, J. Isola, Z. Pályi-Krekk et al., “Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance,” Molecular Cancer Therapeutics, vol. 6, no. 7, pp. 2065–2072, 2007. View at Publisher · View at Google Scholar
  112. A. J. H. Gearing, S. J. Thorpe, K. Miller et al., “Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin,” Immunology Letters, vol. 81, no. 1, pp. 41–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. J. S. Roldán, A. C. Najenson, M. F. Roca, L. Marino, M. A. Jasnis, and G. L. Fiszman, “Study of the immune system participation in tumor progression using a 3D culture model of adenocarcinoma cells and macrophages,” Medicina (Buenos Aires), vol. 69, article 174, 2009. View at Google Scholar
  114. J. S. Roldán, A. C. Najenson, M. F. Roca, L. Marino, M. A. Jasnis, and G. L. Fiszman, “Interaction between mammary adenocarcinoma cells and macrophages in a three-dimensional model of tumor spheroids,” in Proceedings of the AACR, Washington, DC, USA, 2010, Abstract #548.
  115. M. Barok, M. Tanner, K. Koninki, and J. Isola, “Trastuzumab-DM1 causes tumor growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo,” Breast Cancer Research, p. R46, 2011. View at Publisher · View at Google Scholar
  116. L. Gianni, A. Lladó, G. Bianchi et al., “Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1131–1137, 2010. View at Publisher · View at Google Scholar