Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012 (2012), Article ID 124704, 5 pages
http://dx.doi.org/10.1155/2012/124704
Review Article

RKIP Suppresses Breast Cancer Metastasis to the Bone by Regulating Stroma-Associated Genes

Ben May Department for Cancer Research, Gordon Center for Integrative Science, The University of Chicago, W421C, 929 East 57th Street, Chicago, IL 60637, USA

Received 26 September 2011; Accepted 21 November 2011

Academic Editor: Lalita Shevde

Copyright © 2012 Elena Bevilacqua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Finak, N. Bertos, F. Pepin et al., “Stromal gene expression predicts clinical outcome in breast cancer,” Nature Medicine, vol. 14, no. 5, pp. 518–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. P. Gupta and J. Massagué, “Cancer metastasis: building a framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Polyak, I. Haviv, and I. G. Campbell, “Co-evolution of tumor cells and their microenvironment,” Trends in Genetics, vol. 25, no. 1, pp. 30–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Kojima, A. Acar, E. N. Eaton et al., “Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20009–20014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature, vol. 432, no. 7015, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Gao and V. Mittal, “The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression,” Trends in Molecular Medicine, vol. 15, no. 8, pp. 333–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. X. Nguyen and J. Massagué, “Genetic determinants of cancer metastasis,” Nature Reviews Genetics, vol. 8, no. 5, pp. 341–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kang, P. M. Siegel, W. Shu et al., “A multigenic program mediating breast cancer metastasis to bone,” Cancer Cell, vol. 3, no. 6, pp. 537–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Minn, G. P. Gupta, P. M. Siegel et al., “Genes that mediate breast cancer metastasis to lung,” Nature, vol. 436, no. 7050, pp. 518–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Minn, Y. Kang, I. Serganova et al., “Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors,” Journal of Clinical Investigation, vol. 115, no. 1, pp. 44–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. H. Anborgh, J. C. Mutrie, A. B. Tuck, and A. F. Chambers, “Role of the metastasis-promoting protein osteopontin in the tumour microenvironment,” Journal of Cellular and Molecular Medicine, vol. 14, no. 8, pp. 2037–2044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Stafford, K. S. Vaidya, and D. R. Welch, “Metastasis suppressors genes in cancer,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 5, pp. 874–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Fu, P. C. Smith, L. Zhang et al., “Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis,” Journal of the National Cancer Institute, vol. 95, no. 12, pp. 878–889, 2003. View at Google Scholar · View at Scopus
  18. S. Dangi-Garimella, J. Yun, E. M. Eves et al., “Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7,” EMBO Journal, vol. 28, no. 4, pp. 347–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson, “microRNAs as oncogenes and tumor suppressors,” Developmental Biology, vol. 302, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yun, C. A. Frankenberger, W. L. Kuo et al., “Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer,” EMBO Journal, vol. 30, no. 21, pp. 4500–4514, 2011. View at Publisher · View at Google Scholar
  21. T. Kitamuro, K. Takahashi, K. Ogawa et al., “Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9125–9133, 2003. View at Publisher · View at Google Scholar · View at Scopus