Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biodiversity
Volume 2013, Article ID 196527, 7 pages
http://dx.doi.org/10.1155/2013/196527
Research Article

Seasonal Diversity of Arbuscular Mycorrhizal Fungi in Mangroves of Goa, India

Department of Botany, Goa University, Taleigao, Goa 403 206, India

Received 27 September 2012; Revised 24 November 2012; Accepted 31 December 2012

Academic Editor: Curtis C. Daehler

Copyright © 2013 James D’Souza and Bernard Felinov Rodrigues. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Gopal and M. Chauhan, “Biodiversity and its conservation in the sundarban mangrove ecosystem,” Aquatic Sciences, vol. 68, no. 3, pp. 338–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Wang, Q. Qiu, Z. Yang, Z. Hu, N. F. Y. Tam, and G. Xin, “Arbuscular mycorrhizal fungi in two mangroves in South China,” Plant and Soil, vol. 33, no. 1, pp. 181–191, 2010. View at Google Scholar
  3. C. E. Lovelock, I. C. Feller, K. L. McKee, B. M. J. Engelbrecht, and M. C. Ball, “The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama,” Functional Ecology, vol. 18, no. 1, pp. 25–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Alongi, “Present state and future of the world's mangrove forests,” Environmental Conservation, vol. 29, no. 3, pp. 331–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Cui and M. M. Caldwell, “Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches II. Hyphae exploiting root-free soil,” New Phytologist, vol. 133, no. 3, pp. 461–467, 1996. View at Google Scholar · View at Scopus
  6. G. Feng, F. S. Zhang, X. L. Li, C. Y. Tian, C. Tang, and Z. Rengel, “Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots,” Mycorrhiza, vol. 12, no. 4, pp. 185–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Zandavalli, L. R. Dillenburg, and V. D. Paulo, “Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum,” Applied Soil Ecology, vol. 25, no. 3, pp. 245–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. A. van der Heijden, J. N. Klironomos, M. Ursic et al., “Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity,” Nature, vol. 396, no. 6706, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Y. Su, X. Sun, and L. D. Guo, “Seasonality and host preference of arbuscular mycorrhizal fungi of five plant species in the inner mongolia steppe, China,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 57–65, 2011. View at Google Scholar · View at Scopus
  10. T. Kumar and M. Ghose, “Status of arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil,” Wetlands Ecology and Management, vol. 16, no. 6, pp. 471–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. S. Rao, Flora of Goa, Daman, Dadra and Nagar Haveli Volume I & II.Botanical Survey of India, Deep Printers, New Delhi, India, 1985.
  12. A. Walkley and J. A. Black, “An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method,” Soil Science, vol. 37, pp. 29–38, 1934. View at Google Scholar
  13. R. H. Bray and L. T. Kurtz, “Determination of total, organic and available forms of phosphorus in soils,” Soil Science, vol. 59, pp. 39–45, 1945. View at Google Scholar
  14. J. J. Hanway and H. Heidel, “Soil analysis method as used in Iowa State College soil testing laboratory,” Iowa State College of Agriculture, vol. 57, pp. 1–31, 1952. View at Google Scholar
  15. W. L. Lindsay and W. A. Norvell, “Development of DTPA soil test for zinc, iron, manganese and copper,” Soil Science Society of America Journal, vol. 42, pp. 421–428, 1978. View at Google Scholar
  16. J. W. Gerdemann and T. H. Nicolson, “Spore density of the Endogone species extracted from soil by wet sieving and decanting,” Transactions of British Mycological Society, vol. 46, pp. 235–244, 1963. View at Google Scholar
  17. B. F. Rodrigues and T. Muthukumar, Arbuscular Mycorrhizae of Goa—A Manual of Identification Protocols, Goa University, Goa, India, 2009.
  18. N. C. Schenck and Y. Perez, Manual for the Identification of VA Mycorrhizal Fungi, University of Florida, Gainesville, Fla, USA, 1990.
  19. E. H. Simpson, “Measurement of diversity,” Nature, vol. 163, no. 4148, p. 688, 1949. View at Google Scholar · View at Scopus
  20. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, Ill, USA, 1949.
  21. B. F. Rodrigues and N. Anuradha, “Arbuscular mycorrhizal fungi in Khazan land agro-ecosystem,” in Frontiers in Fungal Ecology, Diversity and Metabolites, K. R. Sridhar, Ed., pp. 141–150, I.K. International, New Delhi, India, 2009. View at Google Scholar
  22. R. T. M. Padma and D. Kandaswamy, “Effect of interactions between VA mycorrhizae and graded levels of phosphorus on growth of papaya (Carica papaya),” in Current Trends in Mycorrhizal Research, B. L. Jalai and H. Chand, Eds., pp. 133–134, Haryana Agricultural University, Hisar, India, 1990. View at Google Scholar
  23. J. F. Liao, “The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island,” Acta Scientiarum Naturalium Universitatis, vol. 9, pp. 67–72, 1990. View at Google Scholar
  24. M. Stumm and J. J. Morgan, Aquatic Chemistry, John Wiley and Sons, New York, NY, USA, 3rd edition, 1996.
  25. R. W. Howarth, “Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism,” Science, vol. 203, no. 4375, pp. 49–51, 1979. View at Google Scholar · View at Scopus
  26. S. P. Miller and J. D. Bever, “Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient,” Oecologia, vol. 119, no. 4, pp. 586–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. L. Ruotsalainen, H. Väre, and M. Vestberg, “Seasonality of root fungal colonization in low-alpine herbs,” Mycorrhiza, vol. 12, no. 1, pp. 29–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Lugo, M. E. G. Maza, and M. N. Cabello, “Arbuscular mycorrhizal fungi in a mountain grassland II: seasonal variation of colonization studied, along with its relation to grazing and metabolic host type,” Mycologia, vol. 95, no. 3, pp. 407–415, 2003. View at Google Scholar · View at Scopus
  29. S. S. Dhillion and R. C. Anderson, “Seasonal dynamics of dominant species of arbuscular mycorrhizae in burned and unburned sand prairies,” Canadian Journal of Botany, vol. 71, no. 12, pp. 1625–1630, 1993. View at Google Scholar · View at Scopus
  30. J. N. Gemma, R. E. Koske, and M. Carreiro, “Seasonal dynamics of selected species of V-A mycorrhizal fungi in a sand dune,” Mycological Research, vol. 92, no. 3, pp. 317–321, 1989. View at Google Scholar · View at Scopus
  31. S. P. Bentivenga and B. A. D. Hetrick, “Seasonal and temperature effects on mycorrhizal activity and dependence of cool- and warm-season tallgrass prairie grasses,” Canadian Journal of Botany, vol. 70, no. 8, pp. 1596–1602, 1992. View at Google Scholar · View at Scopus
  32. D. S. Hayman, “Plant growth responses to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature,” New Phytologist, vol. 73, pp. 71–78, 1970. View at Google Scholar
  33. A. Saravanakumar, M. Rajkumar, S. J. Serebiah, and G. A. Thivakaran, “Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat,” Journal of Environmental Biology, vol. 29, no. 5, pp. 725–732, 2008. View at Google Scholar · View at Scopus
  34. E. M. Ahulu, A. Gollotte, V. Gianinazzi-Pearson, and M. Nonaka, “Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species,” Mycorrhiza, vol. 17, no. 1, pp. 37–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Aziz and D. M. Sylvia, “Activity and species composition of arbuscular mycorrhizal fungi following soil removal,” Ecological Applications, vol. 5, no. 3, pp. 776–784, 1995. View at Google Scholar · View at Scopus
  36. R. C. Anderson, A. E. Liberta, and L. A. Dickman, “Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient,” Oecologia, vol. 64, no. 1, pp. 111–117, 1984. View at Publisher · View at Google Scholar · View at Scopus
  37. D. H. Rickerl, F. O. Sancho, and S. Ananth, “Vesicular-arbuscular endomycorrhizal colonization of wetland plants,” Journal of Environmental Quality, vol. 23, no. 5, pp. 913–916, 1994. View at Google Scholar · View at Scopus
  38. J. C. Stutz, R. Copeman, C. A. Martin, and J. B. Morton, “Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa,” Canadian Journal of Botany, vol. 78, no. 2, pp. 237–245, 2000. View at Google Scholar · View at Scopus
  39. J. C. Stutz and J. B. Morton, “Successive pot cultures reveal high species richness of vesicular-arbuscular mycorrhizal fungi across a soil moisture nutrient gradient,” Oecologia, vol. 64, pp. 111–117, 1996. View at Google Scholar
  40. L. K. Abbott and A. D. Robson, “Factors influencing the occurrence of vesicular-arbuscular mycorrhizas,” Agriculture, Ecosystems and Environment, vol. 35, no. 2-3, pp. 121–150, 1991. View at Google Scholar · View at Scopus
  41. W. E. van Duin, J. Rozema, and W. H. O. Ernst, “Seasonal and spatial variation in the occurrence of vesicular-arbuscular (VA) mycorrhiza in salt marsh plants,” Agriculture, Ecosystems and Environment, vol. 29, no. 1–4, pp. 107–110, 1989. View at Google Scholar · View at Scopus
  42. D. L. Stenlund and I. D. Charvat, “Vesicular arbuscular mycorrhizae in floating wetland mat communities dominated by Typha,” Mycorrhiza, vol. 4, no. 3, pp. 131–137, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Guadarrama and F. J. Alvarez-Sanchez, “Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico,” Mycorrhiza, vol. 8, no. 5, pp. 267–270, 1991. View at Google Scholar
  44. Z. W. Zhao, “Population composition and seasonal variation of VA mycorrhizal fungi spores in the rhizosphere soil of four pteridophytes,” Acta Botanica Yunnanica, vol. 21, pp. 437–441, 1999. View at Google Scholar
  45. C. Walker, C. W. Mize, and H. S. McNabb, “Populations of endogonaceous fungi at two locations in central Iowa,” Canadian Journal of Botany, vol. 60, no. 12, pp. 2518–2529, 1982. View at Google Scholar · View at Scopus
  46. K. P. Radhika and B. F. Rodrigues, “Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India,” Aquatic Botany, vol. 86, no. 3, pp. 291–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. K. P. Radhika and B. F. Rodrigues, “Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region,” Journal of Forestry Research, vol. 21, no. 1, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Zhao and Z. Zhao, “Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, Southwest China,” Applied Soil Ecology, vol. 37, no. 1-2, pp. 118–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. X. He, S. Mouratov, and Y. Steinberger, “Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes,” Arid Land Research and Management, vol. 16, no. 2, pp. 149–160, 2002. View at Publisher · View at Google Scholar · View at Scopus