Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2007, Article ID 18709, 7 pages
http://dx.doi.org/10.1155/2007/18709
Research Article

Adaptive Bayesian Iterative Transmission Reconstruction for Attenuation Correction in Myocardial Perfusion Imaging with SPECT/Slow-Rotation Low-Output CT Systems

1Department of Radiology, School of Medicine, Emory University, 1364 Clifton Road, Atlanta 30322, GA, USA
2GE Healthcare, Haifa 39120, Israel

Received 27 January 2006; Revised 14 December 2006; Accepted 14 December 2006

Academic Editor: David Townsend

Copyright © 2007 Ji Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Hendel, D. S. Berman, and S. J. Cullom et al., “Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging,” Circulation, vol. 99, no. 21, pp. 2742–2749, 1999.
  2. J. M. Links, L. C. Becker, and P. Rigo et al., “Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial,” Journal of Nuclear Cardiology, vol. 7, no. 5, pp. 414–425, 2000. View at Publisher · View at Google Scholar · View at PubMed
  3. M. Shotwell, B. M. Singh, C. Fortman, B. D. Bauman, J. Lukes, and M. C. Gerson, “Improved coronary disease detection with quantitative attenuation-corrected Tl-201 images,” Journal of Nuclear Cardiology, vol. 9, no. 1, pp. 52–61, 2002. View at Publisher · View at Google Scholar
  4. J. M. Links, E. G. DePuey, R. Taillefer, and L. C. Becker, “Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT,” Journal of Nuclear Cardiology, vol. 9, no. 2, pp. 183–187, 2002. View at Publisher · View at Google Scholar
  5. R. C. Hendel, J. R. Corbett, S. J. Cullom, E. G. DePuey, E. V. Garcia, and T. M. Bateman, “The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine,” Journal of Nuclear Cardiology, vol. 9, no. 1, pp. 135–143, 2002. View at Publisher · View at Google Scholar
  6. J. A. Sorenson, “Quantitative measurement of radioactivity in vivo by whole body counting,” in Instrumentation in Nuclear Medicine, J. H. Hine and J. A. Sorenson, Eds., pp. 311–348, Academic Press, New York, NY, USA, 1974.
  7. L.-T. Chang, “A method for attenuation correction in radionuclide computed tomography,” IEEE Transactions on Nuclear Science, vol. 25, no. 1, pp. 638–643, 1978.
  8. B. M. W. Tsui, G. T. Gullberg, and E. R. Edgerton et al., “Correction of nonuniform attenuation in cardiac SPECT imaging,” The Journal of Nuclear Medicine, vol. 30, no. 4, pp. 497–507, 1989.
  9. M. A. King, B. M. W. Tsui, and T.-S. Pan, “Attenuation compensation for cardiac single-photon emission computed tomographic imaging—part 1: impact of attenuation and methods of estimating attenuation maps,” Journal of Nuclear Cardiology, vol. 2, no. 6, pp. 513–524, 1995. View at Publisher · View at Google Scholar
  10. H. Zaidi and B. Hasegawa, “Determination of the attenuation map in emission tomography,” The Journal of Nuclear Medicine, vol. 44, no. 2, pp. 291–315, 2003.
  11. E. G. DePuey, E. V. Garcia, and S. Borges-Neto, “Updated imaging guidelines for nuclear cardiology procedures—part 1,” Journal of Nuclear Cardiology, vol. 8, no. 1, pp. G1–G58, 2001.
  12. Y. Liu, F. J. Wackers, and D. Natale et al., “Validation of a hybrid SPECT/CT system with attenuation correction: a phantom study and multicenter trial,” The Journal of Nuclear Medicine, vol. 44, p. 290, 2003.
  13. M. K. O'Connor, B. Kemp, and F. Anstett et al., “A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models,” Journal of Nuclear Cardiology, vol. 9, no. 4, pp. 361–376, 2002. View at Publisher · View at Google Scholar
  14. J. A. Case, T.-S. Pan, M. A. King, D.-S. Luo, B. C. Penney, and M. Z. Rabin, “Reduction of truncation artifacts in fan beam transmission imaging using a spatially varying gamma prior,” IEEE Transactions on Nuclear Science, vol. 42, no. 6, part 2, pp. 2260–2265, 1995. View at Publisher · View at Google Scholar
  15. M. V. Narayanan, C. L. Byrne, and M. A. King, “An interior point iterative maximum-likelihood reconstruction algorithm incorporating upper and lower bounds with application to SPECT transmission imaging,” IEEE Transactions on Medical Imaging, vol. 20, no. 4, pp. 342–353, 2001. View at Publisher · View at Google Scholar · View at PubMed
  16. J. A. Case, S. J. Cullom, J. R. Galt, F. V. Garcia, and T. M. Bateman, “Impact of transmission scan reconstruction using an iterative algorithm (BITGA) versus FBP: clinical appearance of attenuation-corrected myocardial perfusion SPECT images,” The Journal of Nuclear Medicine, vol. 42, p. 51, 2001.
  17. S. J. Cullom, J. A. Case, T. M. Bateman, J. H. O. O'Keefe, and A. McGhie, “Reconstruction of attenuation maps from low-count Gd-153 transmission studies using an iterative Bayesian algorithm: clinical evaluation with simultaneous Tc-99m sestamibi SPECT,” The Journal of Nuclear Medicine, vol. 41, no. 5, p. 134, 2000.
  18. R. J. Jaszczak, K. L. Greer, C. E. Floyd Jr., C. C. Harris, and R. E. Coleman, “Improved SPECT quantitation using compensation for scattered photons,” The Journal of Nuclear Medicine, vol. 25, no. 8, pp. 893–900, 1984.
  19. E. R. Dougherty, An Introduction to Morphological Image Processing, SPIE Press, Bellingham, Wash, USA, 1992.
  20. E. V. Garcia, C. D. Cooke, and K. F. Van Train et al., “Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi,” The American Journal of Cardiology, vol. 66, no. 13, pp. 23E–31E, 1990. View at Publisher · View at Google Scholar
  21. G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Transactions on Medical Imaging, vol. 19, no. 5, pp. 548–555, 2000. View at Publisher · View at Google Scholar · View at PubMed