Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2009 (2009), Article ID 149079, 8 pages
http://dx.doi.org/10.1155/2009/149079
Research Article

GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

1School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2Department of Computer Science, Beijing Institute of Technology, Beijing 100081, China

Received 22 December 2008; Accepted 8 June 2009

Academic Editor: Seung Lee

Copyright © 2009 Xing Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wang and S. W. Lee, “Grangeat-type and Katsevich-type algorithms for cone-beam CT,” CT Theory and Applications, vol. 12, no. 2, pp. 45–55, 2003. View at Google Scholar
  2. K. Zeng, E. Bai, and G. Wang, “A fast CT reconstruction scheme for a general multi-core PC,” International Journal of Biomedical Imaging, vol. 2007, Article ID 29610, 9 pages, 2007. View at Publisher · View at Google Scholar
  3. K. Mueller, F. Xu, and N. Neophytou, “Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography?” in Computational Imaging V, vol. 6498 of Proceedings of SPIE, San Jose, Calif, USA, January 2007. View at Publisher · View at Google Scholar
  4. J. Owens, “GPGPU: general-purpose computation on graphics hardware,” in Proceedings of the 34th International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '07), San Diego, Calif, USA, August 2007.
  5. X. Zhao, J. Bian, S. Y. Emil, S. Cho, P. Zhang, and X. Pan, “GPU-based 3D cone-beam CT image reconstruction: application to micro CT,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS '07), vol. 5, pp. 3922–3925, October-November 2007. View at Publisher · View at Google Scholar
  6. B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic reconstruction using texture mapping hardware,” in Proceedings of the Symposium on Volume Visualization, pp. 91–98, 1994.
  7. F. Xu and K. Mueller, “Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware,” IEEE Transactions on Nuclear Science, vol. 52, no. 3, pp. 654–663, 2005. View at Publisher · View at Google Scholar
  8. K. Mueller and F. Xu, “Practical considerations for GPU-accelerated CT,” in Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (ISBI '06), pp. 1184–1187, Arlington, Va, USA, April 2006.
  9. T. Schiwietz, S. Bose, J. Maltz, and R. Westermann, “A fast and high-quality cone beam reconstruction pipeline using the GPU,” in Medical Imaging 2007: Physics of Medical Imaging, J. Hsieh and M. J. Flynn, Eds., vol. 6510 of Proceedings of SPIE, San Diego, Calif, USA, February 2007. View at Publisher · View at Google Scholar
  10. X. Xue, A. Cheryauka, and D. Tubbs, “Acceleration of fluoro-CT reconstruction for a mobile C-arm on GPU and FPGA hardware: a simulation study,” in Medical Imaging 2006: Physics of Medical Imaging, vol. 6142 of Proceedings of SPIE, San Diego, Calif, USA, February 2006. View at Publisher · View at Google Scholar
  11. I. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone beam algorithm,” Journal of the Optical Society of America A, vol. 1, no. 6, pp. 612–619, 1984. View at Google Scholar
  12. F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruction using commodity graphics hardware,” Physics in Medicine and Biology, vol. 52, no. 12, pp. 3405–3419, 2007. View at Publisher · View at Google Scholar
  13. K. Mueller, N. Neophytou, and F. Xu, “MIC-GPU: high-performance computing for medical imaging on programmable graphics hardware (GPUs),” in SPIE Medical Imaging, pp. 1–46, San Diego, Calif, USA, February 2007.
  14. M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli, “Fast shadows and lighting effects using texture mapping,” in Proceedings of the 19st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '92), pp. 249–252, Chicago, Ill, USA, July 1992.
  15. E. Lengyel, Mathematics for 3D Game Programming and Computer Graphics, Charles River Media, Hingham, Mass, USA, 2nd edition, 2004.