Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2010 (2010), Article ID 125850, 9 pages
http://dx.doi.org/10.1155/2010/125850
Research Article

Characterization of the Lateral Distribution of Fluorescent Lipid in Binary-Constituent Lipid Monolayers by Principal Component Analysis

1Department of Neurology and Center for Translational Systems Biology, The Mount Sinai School of Medicine, New York, NY 10029, USA
2Hormel Institute, University of Minnesota, Austin, MN 55912, USA
3Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation, Russia

Received 23 September 2009; Revised 23 December 2009; Accepted 21 January 2010

Academic Editor: Shan Zhao

Copyright © 2010 István P. Sugár et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Goñi, A. Alonso, L. A. Bagatolli et al., “Phase diagrams of lipid mixtures relevant to the study of membrane rafts,” Biochimica et Biophysica Acta, vol. 1781, no. 11-12, pp. 665–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. Thompson and T. W. Tillack, “Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells,” Annual Review of Biophysics and Biophysical Chemistry, vol. 14, pp. 361–386, 1985. View at Google Scholar · View at Scopus
  3. D. A. Brown and J. K. Rose, “Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface,” Cell, vol. 68, no. 3, pp. 533–544, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. R. E. Brown, “Sphingolipid organization in biomembranes: what physical studies of model membranes reveal,” Journal of Cell Science, vol. 111, no. 1, pp. 1–9, 1998. View at Google Scholar · View at Scopus
  6. D. A. Brown and E. London, “Functions of lipid rafts in biological membranes,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Simons and W. L. C. Vaz, “Model systems, lipid rafts, and cell membranes,” Annual Review of Biophysics and Biomolecular Structure, vol. 33, pp. 269–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. M. McConnell, “Structures and transitions in lipid monolayers at the air-water interface,” Annual Review of Physical Chemistry, vol. 42, no. 1, pp. 171–195, 1991. View at Google Scholar · View at Scopus
  9. H. Möhwald, “Phospholipid monolayers,” in Phospholipids Handbook, G. Cevc, Ed., chapter 16, pp. 579–601, Marcel Dekker, New York, NY, USA, 1993. View at Google Scholar
  10. S. L. Keller, “Coexisting liquid phases in lipid monolayers and bilayers,” Journal of Physics: Condensed Matter, vol. 14, no. 19, pp. 4763–4766, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. I. A. Boldyrev, X. Zhai, M. M. Momsen, H. L. Brockman, R. E. Brown, and J. G. Molotkovsky, “New BODIPY lipid probes for fluorescence studies of membranes,” Journal of Lipid Research, vol. 48, no. 7, pp. 1518–1532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Dahim, N. K. Mizuno, X.-M. Li, W. E. Momsen, M. M. Momsen, and H. L. Brockman, “Physical and photophysical characterization of a BODIPY phosphatidylcholine as a membrane probe,” Biophysical Journal, vol. 83, no. 3, pp. 1511–1524, 2002. View at Google Scholar · View at Scopus
  13. I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Eds., Feature Extraction: Foundations and Applications, vol. 207 of Studies in Fuzziness and Soft Computing, Springer, Berlin, Germany, 2006.
  14. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, 3rd edition, 1996.
  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Eigensystems,” in Numerical Recipes, chapter 11, 1989. View at Google Scholar
  16. K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philosophical Magazine, vol. 2, pp. 559–572, 1901. View at Google Scholar
  17. L. I. Smith, “A tutorial on principal component analysis,” 2002, http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
  18. J. M. Smaby, V. S. Kulkarni, M. Momsen, and R. E. Brown, “The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines,” Biophysical Journal, vol. 70, no. 2, pp. 868–877, 1996. View at Google Scholar · View at Scopus
  19. X.-M. Li, J. M. Smaby, M. M. Momsen, H. L. Brockman, and R. E. Brown, “Sphingomyelin interfacial behavior: the impact of changing acyl chain composition,” Biophysical Journal, vol. 78, no. 4, pp. 1921–1931, 2000. View at Google Scholar · View at Scopus
  20. I. A. Boldyrev and J. G. Molotkovsky, “A synthesis and properties of new 4,4-difluoro-3a,4a- diaza-s-indacene (BODIPY)-labeled lipids,” Russian Journal of Bioorganic Chemistry, vol. 32, no. 1, pp. 78–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. E. Brown and H. L. Brockman, “Using monomolecular films to characterize lipid lateral interactions,” Methods in Molecular Biology, vol. 398, pp. 41–58, 2007. View at Google Scholar · View at Scopus
  22. R. A. Demel, W. S. M. Geurts Van Kessel, R. F. A. Zwaal, B. Roelofsen, and L. L. M. Van Deenen, “Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers,” Biochimica et Biophysica Acta, vol. 406, no. 1, pp. 97–107, 1975. View at Google Scholar
  23. D. Marsh, “Lateral pressure in membranes,” Biochimica et Biophysica Acta, vol. 1286, no. 3, pp. 183–223, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-M. Li, M. M. Momsen, J. M. Smaby, H. L. Brockman, and R. E. Brown, “Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins,” Biochemistry, vol. 40, no. 20, pp. 5954–5963, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Bergström, I. Mikhalyov, P. Hägglöf, R. Wortmann, T. Ny, and L. B.-Å. Johansson, “Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology,” Journal of the American Chemical Society, vol. 124, no. 2, pp. 196–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Tleugabulova, Z. Zhang, and J. D. Brennan, “Characterization of bodipy dimers formed in a molecularly confined environment,” Journal of Physical Chemistry B, vol. 106, no. 51, pp. 13133–13138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Loudet and K. Burgess, “BODIPY dyes and their derivatives: syntheses and spectroscopic properties,” Chemical Reviews, vol. 107, no. 11, pp. 4891–4932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Birks, “Excimer fluorescence. II. Lifetime studies of pyrene solutions,” Proceedings of the Royal Society A, vol. 275, pp. 575–588, 1963. View at Google Scholar