Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2010, Article ID 906067, 13 pages
http://dx.doi.org/10.1155/2010/906067
Research Article

Retinal Fundus Image Registration via Vascular Structure Graph Matching

1School of Electronic Engineering, Xidian University, Xi'an, Shanxi 710071, China
2Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 21 May 2010; Accepted 7 July 2010

Academic Editor: Ge Wang

Copyright © 2010 Kexin Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. DeGrezia and M. Robinson, “Ophthalmic manifestations of HIV: an update,” The Journal of the Association of Nurses in AIDS Care, vol. 12, no. 3, pp. 22–32, 2001. View at Google Scholar · View at Scopus
  2. S. L. Fine, “Observations following laser treatment for choroidal neovascularization,” Archives of Ophthalmology, vol. 106, no. 11, pp. 1524–1525, 1988. View at Google Scholar · View at Scopus
  3. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 347–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. Van Saarloos, “Registration of stereo and temporal images of the retina,” IEEE Transactions on Medical Imaging, vol. 18, no. 5, pp. 404–418, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Transactions on Information Technology in Biomedicine, vol. 3, no. 1, pp. 47–60, 1999. View at Google Scholar · View at Scopus
  6. J. C. Nunes, Y. Bouaoune, E. Delechelle, and PH. Bunel, “A multiscale elastic registration scheme for retinal angiograms,” Computer Vision and Image Understanding, vol. 95, no. 2, pp. 129–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-L. Tsai, C.-Y. Li, G. Yang, and K.-S. Lin, “The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence,” IEEE Transactions on Medical Imaging, vol. 29, no. 3, pp. 636–649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Yang, C. V. Stewart, M. Sofka, and C.-L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1973–1989, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zheng, J. Tian, Y. Dai, K. Deng, and J. Chen, “Retinal image registration based on salient feature regions,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 102–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Zana and J. C. Klein, “A multimodal registration algorithm of eye fundus images using vessels detection and hough transform,” IEEE Transactions on Medical Imaging, vol. 18, no. 5, pp. 419–428, 1999. View at Google Scholar · View at Scopus
  11. T. Chanwimaluang, G. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 1, pp. 129–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Fang and Y. Y. Tang, “Elastic registration for retinal images based on reconstructed vascular trees,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 6, Article ID 1634512, pp. 1183–1187, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Transactions on Medical Imaging, vol. 22, no. 11, pp. 1379–1394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. G. K. Matsopoulos, P. A. Asvestas, N. A. Mouravliansky, and K. K. Delibasis, “Multimodal registration of retinal images using self organizing maps,” IEEE Transactions on Medical Imaging, vol. 23, no. 12, pp. 1557–1562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Laliberté, L. Gagnon, and Y. Sheng, “Registration and fusion of retinal images—an evaluation study,” IEEE Transactions on Medical Imaging, vol. 22, no. 5, pp. 661–673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Aguilar, M.E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” in Proceedings of the 6th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, vol. 4538 of Lecture Notes in Computer Science, pp. 25–36, 2007. View at Scopus
  17. W. Aguilar, Y. Frauel, F. Escolano, M. E. Martinez-Perez, A. Espinosa-Romero, and M. A. Lozano, “A robust Graph Transformation Matching for non-rigid registration,” Image and Vision Computing, vol. 27, no. 7, pp. 897–910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar Jr., H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Transactions on Medical Imaging, vol. 25, no. 9, Article ID 1677727, pp. 1214–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sofka and C. V. Stewart, “Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures,” IEEE Transactions on Medical Imaging, vol. 25, no. 12, pp. 1531–1546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. H. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms,” IEEE Transactions on Information Technology in Biomedicine, vol. 3, no. 2, pp. 125–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, A. Bhalerao, and R. Wilson, “Analysis of retinal vasculature using a multiresolution hermite model,” IEEE Transactions on Medical Imaging, vol. 26, no. 2, pp. 137–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hoover, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. 203–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Ryan, C. Heneghan, and P. De Chazal, “Registration of digital retinal images using landmark correspondence by expectation maximization,” Image and Vision Computing, vol. 22, no. 11, pp. 883–898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Martin A. Fischler and Robert C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 4, pp. 377–388, 1996. View at Google Scholar · View at Scopus
  27. T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” in Advanced in Neural Information Processing Systems, 2006.
  28. R. Myers, R. C. Wilson, and E. R. Hancock, “Bayesian graph edit distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 628–635, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, “Shock graphs and shape matching,” International Journal of Computer Vision, vol. 35, no. 1, pp. 13–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. G. D. Hager and P. N. Belhumeur, “Efficient region tracking with parametric models of geometry and illumination,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 10, pp. 1025–1039, 1998. View at Google Scholar · View at Scopus
  31. S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, pp. 145–152, 2001.
  32. K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Zass and A. Shashua, “Probabilistic graph and hypergraph matching,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), June 2008. View at Publisher · View at Google Scholar · View at Scopus