Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2011, Article ID 236854, 13 pages
Research Article

Development of a New Tool for 3D Modeling for Regenerative Medicine

1Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Perugia, Via del Giochetto, 06126 Perugia, Italy
2Translational Cardiomyology Laboratory, SCIL K.U. Leuven, 3000 Leuven, Belgium
3Dipartimento di Medicina Sperimentale, Sezione Anatomia Umana, Università di Pavia, 27100 Pavia, Italy
4Dipartimento di Medicina Sperimentale e Diagnostica, Sezione di Microbiologia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
5Laboratorio di Neurogenetica, CERC-IRCCS Santa Lucia, Rome, Italy
6Dipartimento di Neuroscienze, Università di Roma “Tor Vergata”, Rome, Italy

Received 4 November 2010; Revised 4 March 2011; Accepted 6 April 2011

Academic Editor: Pingkun Yan

Copyright © 2011 Filippo Mattoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The effectiveness of therapeutic treatment based on regenerative medicine for degenerative diseases (i.e., neurodegenerative or cardiac diseases) requires tools allowing the visualization and analysis of the three-dimensional (3D) distribution of target drugs within the tissue. Here, we present a new computational procedure able to overcome the limitations of visual analysis emerging by the examination of a molecular signal within images of serial tissue/organ sections by using the conventional techniques. Together with the 3D anatomical reconstitution of the tissue/organ, our framework allows the detection of signals of different origins (e.g., marked generic molecules, colorimetric, or fluorimetric substrates for enzymes; microRNA; recombinant protein). Remarkably, the application does not require the employment of specific tracking reagents for the imaging analysis. We report two different representative applications: the first shows the reconstruction of a 3D model of mouse brain with the analysis of the distribution of the β-Galactosidase, the second shows the reconstruction of a 3D mouse heart with the measurement of the cardiac volume.