Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2011, Article ID 606857, 12 pages
Research Article

A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

1Department of Biomedical Engineering, Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Department of Pathology, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
4Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 14 December 2010; Accepted 27 March 2011

Academic Editor: Haim Azhari

Copyright © 2011 Cheng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.