Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012 (2012), Article ID 327198, 10 pages
http://dx.doi.org/10.1155/2012/327198
Research Article

Fracture Detection in Traumatic Pelvic CT Images

1Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
2Department of Electrical and Computer Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
3Department of Emergency Medicine, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
4Virginia Commonwealth University Reanimation Engineering Science Center (VCURES), Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA
5Department of Radiology, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA

Received 2 July 2011; Revised 30 September 2011; Accepted 30 September 2011

Academic Editor: Shan Zhao

Copyright © 2012 Jie Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Schiff, A. F. Tencer, and C. D. Mack, “Risk factors for pelvic fractures in lateral impact motor vehicle crashes,” Accident Analysis and Prevention, vol. 40, no. 1, pp. 387–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Salim, P. G. R. Teixeira, J. DuBose et al., “Predictors of positive angiography in pelvic fractures: a prospective study,” Journal of the American College of Surgeons, vol. 207, no. 5, pp. 656–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. University of Maryland National Study Center for Trauma/EMS, “Lower extremity injuries among restrained vehicle occupants,” Tech. Rep., University of Maryland National Study Center for Trauma/EMS, 2001. View at Google Scholar
  4. G. S. Pajenda, H. Seitz, M. Mousavi, and V. Vecsei, “Concomitant intra-abdominal injuries in pelvic trauma,” Wien Klin Wochenscher, vol. 110, no. 23, pp. 834–840, 1998. View at Google Scholar
  5. Z. Balogh, K. L. King, P. Mackay et al., “The epidemiology of pelvic ring fractures: a population-based study,” Journal of Trauma, vol. 63, no. 5, pp. 1066–1072, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Ferrera and D. A. Hill, “Good outcomes of open pelvic fractures,” Injury, vol. 30, no. 3, pp. 187–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. D. Brenneman, D. Katyal, B. R. Boulanger, M. Tile, and D. A. Redelmeier, “Long-term outcomes in open pelvic fractures,” Journal of Trauma, vol. 42, no. 5, pp. 773–777, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Moghari and P. Abolmaesumi, “Global registration of multiple bone fragments using statistical atlas models: feasibility experiments,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 5374–5377, August 2008. View at Scopus
  9. M. H. Moghari and P. Abolmaesumi, “Global registration of multiple point sets: feasibility and applications in multi-fragment fracture fixation,” in Proceedings of 10th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '07), vol. 10, pp. 943–950, Brisbane, Australia, 2007. View at Scopus
  10. S. Winkelbach, R. Westphal, and T. Goesling, “Pose estimation of cylindrical fragments for semi-automatic bone fracture reduction,” in Proceedings of the 25th Annual Symposium of the German Association for Pattern Recognition (DAGM '03), vol. 2781 of Lecture Notes in Computer Science, pp. 566–573, Magdeburg, Germany, 2003.
  11. D. M. Ryder, S. L. King, C. J. Olliff, and E. Davies, “Possible method of monitoring bone fracture and bone characteristics using a non-invasive acoustic technique,” in Proceedings of the International Conference on Acoustic Sensing and Imaging, pp. 159–163, March 1993. View at Scopus
  12. T. S. Douglas, V. Sanders, R. Pitcher, and A. B. van As, “Early detection of fractures with low-dose digital X-ray images in a pediatric trauma unit,” Journal of Trauma, vol. 65, no. 1, pp. E4–E7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. P. Tian, Y. Chen, W. K. Leow, W. Hsu, T. S. Howe, and M. A. Png, “Computing neck-shaft angle of femur for X-ray fracture detection,” in Proceedings of the International Conference on Computer Analysis of Images and Patterns, vol. 2756 of Lecture Notes in Computer Science, pp. 82–89, Springer, 2003.
  14. V. L. F. Lum, W. K. Leow, Y. Chen, T. S. Howe, and M. A. Png, “Combining classifiers for bone fracture detection in X-ray images,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '05), pp. 1149–1152, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Lee, S. Huh, T. A. Ketter, and M. Unser, “Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images,” Computers in Biology and Medicine, vol. 28, no. 3, pp. 309–338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Montagnat and H. Delingette, “4D deformable models with temporal constraints: application to 4D cardiac image segmentation,” Medical Image Analysis, vol. 9, no. 1, pp. 87–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Schmid and N. Magnenat-Thalmann, “MRI bone segmentation using deformable models and shape priors,” in Proceedings of 11th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '08), vol. 11, pp. 119–126, New York, NY, USA, 2008. View at Scopus
  18. P. C. T. Gonçalves, J. M. R. S. Tavares, and R. M. N. Jorge, “Segmentation and simulation of objects represented in images using physical principles,” Computer Modeling in Engineering and Sciences, vol. 32, no. 1, pp. 45–55, 2008. View at Google Scholar · View at Scopus
  19. S. Sandor and R. Leahy, “Surface-based labeling of cortical anatomy using a deformable atlas,” IEEE Transactions on Medical Imaging, vol. 16, no. 1, pp. 41–54, 1997. View at Google Scholar · View at Scopus
  20. W. Cai, S. Chen, and D. Zhang, “Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation,” Pattern Recognition, vol. 40, no. 3, pp. 825–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. A. Vrooman, C. A. Cocosco, R. Stokking et al., “KNN-based multi-spectral MRI brain tissue classification: manual training versus automated atlas-based training,” in Medical Imaging 2006: Image Processing, Proceedings of the SPIE, San Diego, Calif, USA, February 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wu, P. Davuluri, K. Ward, C. Cockrell, R. Hobson, and K. Najarian, “A new hierarchical method for multi-level segmentation of bone in pelvic CT scans,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '11), 2011.
  23. S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models-their training and application,” Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38–59, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Maes, D. Vandermeulen, and P. Suetens, “Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information,” Medical Image Analysis, vol. 3, no. 4, pp. 373–386, 1999. View at Google Scholar · View at Scopus
  26. G. P. Nason and B. W. Silverman, “The stationary wavelet transform and some statistical applications,” in Wavelets and Statistics, vol. 103 of Lecture Notes in Statistics, pp. 281–299, Springer, 1995. View at Google Scholar
  27. N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Publisher · View at Google Scholar