Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012, Article ID 940585, 26 pages
http://dx.doi.org/10.1155/2012/940585
Review Article

A Review of Indocyanine Green Fluorescent Imaging in Surgery

1Department of Electrical Engineering and Energy Technology, University of Vaasa, Vaasa, Finland
2Department of Hand Surgery, Tampere University Hospital, 33680 Tampere, Finland
3Department of Neurosurgery, Helsinki University Central Hospital (HUCH), Helsinki, Finland
4Department of Cardiosurgery, Helsinki University Central Hospital, Helsinki, Finland
5Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
6Saratov State University, Saratov 410012, Russia
7Institute of Precise Mechanics and Control, Russian Academy of Sciences, Saratov 410028, Russia
8University of Oulu, Oulu, Finland
9Clinic of Angiosurgery, Helsinki University Central Hospital, Helsinki, Finland

Received 1 September 2011; Accepted 1 February 2012

Academic Editor: Guowei Wei

Copyright © 2012 Jarmo T. Alander et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Wu, F. A. Merchant, and K. R. Castleman, Eds., Microscope Image Processing, Academic Press, New York, NY, USA, 2008.
  2. M. Choi, K. Choi, S.-W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” Journal of Biomedical Optics, vol. 16, no. 4, Article ID 046008, 2011. View at Publisher · View at Google Scholar
  3. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Current Opinion in Chemical Biology, vol. 6, no. 5, pp. 642–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Liu, A. Q. Bauer, W. J. Akers et al., “Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery,” Surgery, vol. 149, no. 5, pp. 689–698, 2011. View at Publisher · View at Google Scholar
  5. J. T. Alander, “Processing of indocyanine green fluorescence images,” In Preparation.
  6. Ó. G. Björnsson, R. Murphy, and V. S. Chadwick, “Physicochemical studies of indocyanine green (ICG): absorbance/concentration relationship, pH tolerance and assay precision in various solvents,” Experientia, vol. 38, no. 12, pp. 1441–1442, 1982. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Engel, R. Schraml, T. Maisch et al., “Light-induced decomposition of indocyanine green,” Investigative Ophthalmology and Visual Science, vol. 49, no. 5, pp. 1777–1783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kogure and E. Choromokos, “Infrared absorption angiography,” Journal of Applied Physiology, vol. 26, no. 1, pp. 154–157, 1969. View at Google Scholar · View at Scopus
  9. R. W. Flower, “Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye,” Investigative Ophthalmology, vol. 12, no. 12, pp. 881–895, 1973. View at Google Scholar · View at Scopus
  10. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Current Opinion in Chemical Biology, vol. 7, no. 5, pp. 626–634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors, vol. 8, no. 5, pp. 3082–3105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. P. L. Choyke, R. Alford, H. M. Simpson et al., “Toxicity of organic fluorophores used in molecular imaging: literature review,” Molecular Imaging, vol. 8, no. 6, pp. 341–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. A. Yannuzzi, “Indocyanine green angiography: a perspective on use in the clinical setting,” American Journal of Ophthalmology, vol. 151, no. 5, pp. 745–751, 2011. View at Publisher · View at Google Scholar
  14. A. Agarwal, Ed., Fundus Fluorescein and Indocyanine Green Angiography, A Textbook and Atlas, SLACK Incorporated, Thorofare, NJ, USA, 2008.
  15. S. L. Owens, “Indocyanine green angiography,” British Journal of Ophthalmology, vol. 80, no. 3, pp. 263–266, 1996. View at Google Scholar · View at Scopus
  16. D. Stanescu-Segall and T. L. Jackson, “Vital staining with indocyanine green: a review of the clinical and experimental studies relating to safety,” Eye, vol. 23, no. 3, pp. 504–518, 2009. View at Publisher · View at Google Scholar
  17. C. H. Meyer, R. A. Oechsler, and E. B. Rodrigues, “Historical considerations in applying vital dyes in vitreoretinal surgery: from early experiments to advanced chromovitrectomy,” Expert Reviews in Ophthalmology, vol. 2, no. 1, pp. 71–77, 2007. View at Publisher · View at Google Scholar
  18. A. Godavarty, M. J. Eppstein, C. Zhang et al., “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Physics in Medicine and Biology, vol. 48, no. 12, pp. 1701–1720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kortgen, P. Recknagel, and M. Bauer, “How to assess liver function?” Current Opinion in Critical Care, vol. 16, no. 2, pp. 136–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Paumgartner, “Biliary physiology and disease: reflections of a physician-scientist,” Hepatology, vol. 51, no. 4, pp. 1095–1106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Houston, Near infrared fluorescent optical lymphography for cancer diagnostics, Ph.D. thesis, Texas A&M University, Chemical Engineering, College Station, Tex, USA, 2005.
  22. E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” European Journal of Surgical Oncology, vol. 36, no. 1, pp. 6–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. E. Schaafsma, J. S.D. Mieog, M. Hutteman et al., “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” Journal of Surgical Oncology, vol. 104, no. 3, pp. 323–332, 2011. View at Publisher · View at Google Scholar
  24. K. Polom, D. Murawa, Y.-S. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review,” Cancer, vol. 117, no. 21, pp. 4812–4822, 2011. View at Publisher · View at Google Scholar
  25. S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials, vol. 32, no. 29, pp. 7127–7138, 2011. View at Publisher · View at Google Scholar
  26. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns, vol. 37, no. 3, pp. 377–386, 2011. View at Publisher · View at Google Scholar
  27. M. V. Marshall, J. C. Rasmussen, I.-V. Tan et al., “Near-infrared fluorescent imaging in humans with indocyanine green: a review and update,” The Open Surgical Oncological Journal, vol. 2, pp. 12–25, 2010. View at Google Scholar
  28. MICAD, Molecular Imaging and Contrast Agent Database (MICAD), National Library of Medicine (NCBIUS), Bethesda, Md, USA, 2004.
  29. B. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in intralipid solution,” Journal of Biomedical Optics, vol. 9, no. 3, pp. 497–503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” in Proceedings of the 2008 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Applications, S. Ye, G. Zhang, and J. Ni, Eds., vol. SPIE-7160, The International Society for Optical Engineering, Beijing, China, 2009.
  31. Z. Zhang, M. Y. Berezin, J. L. F. Kao, A. D'Avignon, M. Bai, and S. Achilefu, “Near-infrared dichromic fluorescent carbocyanine molecules,” Angewandte Chemie, vol. 47, no. 19, pp. 3584–3587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. V. Frangioni, “New technologies for human cancer imaging,” Journal of Clinical Oncology, vol. 26, no. 24, pp. 4012–4021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, “Cyanines during the 1990s: a review,” Chemical Reviews, vol. 100, no. 6, pp. 1973–2011, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochemistry and Photobiology, vol. 71, no. 3, pp. 347–350, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-M. I. Maarek, D. P. Holschneider, and J. Harimoto, “Fluorescence of indocyanine green in blood: intensity dependence on concentration and stabilization with sodium polyaspartate,” Journal of Photochemistry and Photobiology B, vol. 65, no. 2-3, pp. 157–164, 2001. View at Publisher · View at Google Scholar
  36. R. D. Hall and C. F. Chignell, “Steady-state near-infrared detection of singlet molecular oxygen: a Stern-Volmer quenching experiment with sodium azide,” Photochemistry and Photobiology, vol. 45, no. 4, pp. 459–464, 1987. View at Google Scholar · View at Scopus
  37. F. Rotermund, R. Weigand, W. Holzer, M. Wittmann, and A. Penzkofer, “Fluorescence spectroscopic analysis of indocyanine green J aggregates in water,” Journal of Photochemistry and Photobiology A, vol. 110, no. 1, pp. 75–78, 1997. View at Google Scholar · View at Scopus
  38. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light absorbing properties, stability, and spectral stabilization of indocyanine green,” Journal of Applied Physiology, vol. 40, no. 4, pp. 575–583, 1976. View at Google Scholar · View at Scopus
  39. S. Fickweiler, R. M. Szeimies, W. Bäumler et al., “Indocyanine green: intracellular uptake and phototherapeutic effects In vitro,” Journal of Photochemistry and Photobiology B, vol. 38, no. 2-3, pp. 178–183, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Tokuda, C. F. Zorumski, and Y. Izumi, “Involvement of illumination in indocyanine green toxicity after its washout in the ex vivo rat retina,” Retina, vol. 29, no. 3, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Sato, M. Ito, M. Ishida, and Y. Karasawa, “Phototoxicity of indocyanine green under continuous fluorescent lamp illumination and its prevention by blocking red light on cultured müller cells,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 4337–4345, 2010. View at Publisher · View at Google Scholar
  42. K. J. Baker, “Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins,” Proceedings of the Society for Experimental Biology and Medicine, vol. 122, no. 4, pp. 957–963, 1966. View at Google Scholar · View at Scopus
  43. K. Kamisaka, Y. Yatsuji, H. Yamada, and H. Kameda, “The binding of indocyanine green and other organic anions to serum proteins in liver diseases,” Clinica Chimica Acta, vol. 53, no. 2, pp. 255–264, 1974. View at Google Scholar · View at Scopus
  44. S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Investigative Ophthalmology and Visual Science, vol. 39, no. 7, pp. 1286–1290, 1998. View at Google Scholar · View at Scopus
  45. V. I. Kochubey, T. V. Kulyabina, V. V. Tuchin, and G. B. Altshuler, “Spectral characteristics of indocyanine green upon its interaction with biological tissues,” Optics and Spectroscopy, vol. 99, no. 4, pp. 560–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Ciamberlini, V. Guarnieri, G. Longobardi, P. Poggi, M. C. Donati, and G. Panzardi, “Indocyanine green videoangiography using cooled charge-coupled devices in central serous choroidopathy,” Journal of Biomedical Optics, vol. 2, no. 2, pp. 218–225, 1997. View at Google Scholar · View at Scopus
  47. R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of noninvasive In vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochemistry and Photobiology, vol. 66, no. 3, pp. 326–335, 1997. View at Google Scholar · View at Scopus
  48. E. A. Genina, A. N. Bashkatov, V. I. Kochubei, V. V. Tuchin, and G. B. Altshuler, “The interaction of Indocyanine Green dye with the human epidermis studied In vivo,” Technical Physics Letters, vol. 27, no. 7, pp. 602–604, 2001. View at Publisher · View at Google Scholar
  49. S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” Journal of Biomedical Optics, vol. 15, no. 2, p. 026005, 2010. View at Google Scholar · View at Scopus
  50. H. Ohkubo, H. Musha, and K. Okuda, “Effects of caloric restriction on the kinetics of indocyanine green in patients with liver diseases and in the rat,” American Journal of Digestive Diseases, vol. 23, no. 11, pp. 1017–1024, 1978. View at Google Scholar · View at Scopus
  51. N. Tanaka, K. Kanai, and T. Oda, “On the pathological modification of serum high density lipoproteins in liver diseases. An alteration in the binding mode of indocyanine green with human serum proteins,” Clinica Chimica Acta, vol. 49, no. 3, pp. 333–340, 1973. View at Google Scholar
  52. M. Reekers, M. J. G. Simon, F. Boer et al., “Pulse dye densitometry and indocyanine green plasma disappearance in ASA physical status I-II patients,” Anesthesia and Analgesia, vol. 110, no. 2, pp. 466–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Paumgartner, “The handling of indocyanine green by the liver,” Schweizerische Medizinische Wochenschrift, vol. 105, no. 17, 1975. View at Google Scholar · View at Scopus
  54. J. F. Kiilgaard, M. H. Nissen, and M. la Cour, “An isotonic preparation of 1 mg/ml indocyanine green is not toxic to hyperconfluent ARPE19 cells, even after prolonged exposure,” Acta Ophthalmologica Scandinavica, vol. 84, no. 1, pp. 42–46, 2006. View at Publisher · View at Google Scholar
  55. T. L. Jackson, B. Vote, B. C. Knight, A. El-Amir, M. R. Stanford, and J. Marshall, “Safety testing of infracyanine green using retinal pigment epithelium and glial cell cultures,” Investigative Ophthalmology and Visual Science, vol. 45, no. 10, pp. 3697–3703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. F. M. Penha, M. Maia, M. E. Farah et al., “Morphologic and clinical effects of subretinal injection of indocyanine green and infracyanine green in rabbits,” Journal of Ocular Pharmacology and Therapeutics, vol. 24, no. 1, pp. 52–61, 2008. View at Publisher · View at Google Scholar
  57. H. F. Yam, A. K. H. Kwok, K. P. Chan et al., “Effect of indocyanine green and illumination on gene expression in human retinal pigment epithelial cells,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 370–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. M. V. Marshall, D. Draney, E. M. Sevick-Muraca, and D. M. Olive, “Single-dose intravenous toxicity study of IRDye 800CW in sprague-dawley Rats,” Molecular Imaging and Biology, vol. 12, no. 6, pp. 583–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. F. B. Dietz and R. A. Jaffe, “Indocyanine green: evidence of neurotoxicity in spinal root axons,” Anesthesiology, vol. 98, no. 2, pp. 516–520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. S.-L. Hsu, Y. H. Kao, and W. C. Wu, “Effect of indocyanine green on the growth and viability of cultured human retinal pigment epithelial cells,” Journal of Ocular Pharmacology and Therapeutics, vol. 20, no. 4, pp. 353–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. A. A. Chang, M. Zhu, and F. Billson, “The interaction of indocyanine green with human retinal pigment epithelium,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1463–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Kuroda, H. Kinouchi, K. Kanemaru, T. Wakai, N. Senbokuya, and T. Horikoshi, “Indocyanine green videoangiography to detect aneurysm and related vascular structures buried in subarachnoid clots: case report,” Journal of Neurosurgery, vol. 114, no. 4, pp. 1054–1056, 2011. View at Publisher · View at Google Scholar
  63. E. S. Nussbaum, A. Defillo, and L. Nussbaum, “The use of indocyanine green videoangiography to optimize the dural opening for intracranial parasagittal lesions,” Neurosurgery. In press. View at Publisher · View at Google Scholar
  64. S. Homina, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signals in the measurement of human muscle,” Journal of Biomedical Optics, vol. 1, no. 4, pp. 418–424, 1996. View at Google Scholar
  65. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, The International Society for Optics and Photonics (SPIE), Bellingham, Wash, USA, 2007.
  66. J. Chen, I. R. Corbin, H. Li, W. Cao, J. D. Glickson, and G. Zheng, “Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging In vivo,” Journal of the American Chemical Society, vol. 129, no. 18, pp. 5798–5799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Stepp, H. Schachenmayr, A. Ehrhardt, W. Göbel, S. Zhorzel, and C. S. Betz, “Endoscopic ICG perfusion imaging for flap transplants: technical development,” in Photonic Therapeutics and Diagnostics VI, N. Kollias, Ed., vol. SPIE-7548, The International Society for Optical Engineering, Bellingham, Wash, USA, 2010. View at Google Scholar
  68. G. Sun, M. Y. Berezin, J. Fan et al., “Bright fluorescent nanoparticles for developing potential optical imaging contrast agents,” Nanoscale, vol. 2, no. 4, pp. 548–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. V. B. Rodriguez, S. M. Henry, A. S. Hoffman, P. S. Stayton, X. Li, and S. H. Pun, “Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging,” Journal of Biomedical Optics, vol. 13, no. 1, p. 014025, 2008. View at Publisher · View at Google Scholar
  70. A. K. Kirchherr, A. Briel, and K. Mäder, “Stabilization of indocyanine green by encapsulation within micellar systems,” Molecular Pharmaceutics, vol. 6, no. 2, pp. 480–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Ogawa, N. Kosaka, P. L. Choyke, and H. Kobayashi, “In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green,” Cancer Research, vol. 69, no. 4, pp. 1268–1272, 2009. View at Publisher · View at Google Scholar
  72. F. Liu, D. Deng, X. Chen, Z. Qian, S. Achilefu, and Y. Gu, “Folate-polyethylene glycol conjugated near-infrared fluorescence probe with high targeting affinity and sensitivity for In vivo early tumor diagnosis,” Molecular Imaging and Biology, vol. 12, no. 6, pp. 595–607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Ebert, B. Riefke, U. Sukowski, and K. Licha, “Cyanine dyes as contrast agents for near-infrared imaging In vivo: acute tolerance, pharmacokinetics, and fluorescence imaging,” Journal of Biomedical Optics, vol. 16, no. 6, Article ID 066003, 2011. View at Publisher · View at Google Scholar
  74. M. A. Yaseen, J. Yu, B. Jung, M. S. Wong, and B. Anvari, “Biodistribution of encapsulated indocyanine green in healthy mice,” Molecular Pharmaceutics, vol. 6, no. 5, pp. 1321–1332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. R. X. Xu, J. Huang, J. S. Xu et al., “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” Journal of biomedical optics, vol. 14, no. 3, p. 034020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Yu, D. Yavier, M. A. Yaseen et al., “Self-assembly synthesis, tumor cell targeting, and photothermal cababilities of antibody-coated indocyanine green nanocapsules,” Journal of the American Chemical Society, vol. 132, no. 6, pp. 1929–1938, 2010. View at Google Scholar
  77. Y. Chen, T. Jabbour, and X. Li, “Functional fluorescent nanocapsules for molecular imaging and potential targeted therapy,” in Proceedings of the European Conference on Lasers and Electro-Optics (CLEO '11), pp. 1–2, IEEE, Piscataway, NJ, May 2011.
  78. M. A. Yaseen, J. Yu, M. S. Wong, and B. Anvari, “In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green,” Optics Express, vol. 16, no. 25, pp. 20577–20587, 2008. View at Publisher · View at Google Scholar
  79. A. Makino, S. Kizaka-Kondoh, R. Yamahara et al., “Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(l-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide,” Biomaterials, vol. 30, no. 28, pp. 5156–5160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. B. M. Barth, R. Sharma, E. I. Altinoǧlu et al., “Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers In vivo,” ACS Nano, vol. 4, no. 3, pp. 1279–1287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Stalmans, E. J. Feron, R. Parys-Van Ginderdeuren, A. Van Lommel, G. R. J. Melles, and M. Veckeneer, “Double vital staining using trypan blue and infracyanine green in macular pucker surgery,” British Journal of Ophthalmology, vol. 87, no. 6, pp. 713–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Haritoglou, A. Gandorfer, M. Schaumberger, R. Tadayoni, A. Gandorfer, and A. Kampik, “Light-absorbing properties and osmolarity of indocyanine-green depending on concentration and solvent medium,” Investigative Ophthalmology and Visual Science, vol. 44, no. 6, pp. 2722–2729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes, Eds., Medical Image Registration, CRC Press, Boca Raton, Fla, USA, 2001.
  84. C.-L. Tsai, S.-T. Huang, K.-S. Lin, and S.-J. Chen, “Robust pairwise registration for images of indocyanine-green angiographic sequences,” in Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks, pp. 394–399, IEEE Computer Society, 2009.
  85. J. Reichman, Handbook of Optical Filters for Fluorescence Microscopy, Chroma Technology Corp., Brattleboro, Vt, USA, 2000.
  86. A. M. De Grand and J. V. Frangioni, “An Operational Near-Infrared Fluorescence Imaging System Prototype for Large Animal Surgery,” Technology in Cancer Research and Treatment, vol. 2, no. 6, pp. 553–562, 2003. View at Google Scholar · View at Scopus
  87. S. Hettige and D. Walsh, “Indocyanine green video-angiography as an aid to surgical treatment of spinal dural arteriovenous fistulae,” Acta Neurochirurgica, vol. 152, no. 3, pp. 533–536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Raabe, J. Beck, R. Gerlach et al., “Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow,” Neurosurgery, vol. 52, no. 1, pp. 132–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Meier, S. Boddington, C. Krug et al., “Detection of postoperative granulation tissue with an ICG-enhanced integrated OI-/X-ray system,” Journal of Translational Medicine, vol. 6, article no. 73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Kang, M. Choi, J. Lee, G. Y. Koh, K. Kwon, and C. Choi, “Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics,” PLoS ONE, vol. 4, no. 1, Article ID e4275, 2009. View at Publisher · View at Google Scholar
  91. J. Ge, Fluorescence-enhanced optical imaging on three-dimensional phantoms using a hand-held probe based frequency-domain intensified charge coupled device (ICCD) optical imager, Ph.D. thesis, Florida International University, Miami, Fla, USA, 2008.
  92. M. Fujiwara, T. Mizukami, A. Suzuki, and H. Fukamizu, “Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 10, pp. e373–e378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Ishizawa, Y. Bandai, N. Harada et al., “Indocyanine green-fluorescent imaging of hepatocellular carcinoma during laparoscopic hepatectomy: an initial experience,” Asian Journal of Endoscopic Surgery, vol. 3, no. 1, pp. 42–45, 2010. View at Publisher · View at Google Scholar
  94. T. Ku, J. Lee, and C. Choi, “Cerebral blood flow imaging using timeseries analysis of indocyanine green molecular dynamics in mice,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VIII, D. L. Farkas, D. V. Nicolau, and R. C. Leif, Eds., vol. SPIE-7568, The International Society for Optical Engineering, Bellingham, Wash, USA, 2010. View at Google Scholar
  95. Y. Kawaguchi, T. Ishizawa, K. Masuda et al., “Hepatobiliary surgery guided by a novel fluorescent imaging technique for visualizing hepatic arteries, bile ducts, and liver cancers on color images,” Journal of the American College of Surgeons, vol. 212, no. 6, pp. e33–e39, 2011. View at Publisher · View at Google Scholar
  96. S. K. Singh, N. D. Desai, G. Chikazawa et al., “The Graft Imaging to Improve Patency (GRIIP) clinical trial results,” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 2, pp. 294–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Kuroiwa, Y. Kajimoto, and T. Ohta, “Development and clinical application of near-infrared surgical microscope: preliminary report,” Minimally Invasive Neurosurgery, vol. 44, no. 4, pp. 240–242, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Hirche, S. Dresel, R. Krempien, and M. Hünerbein, “Sentinel node biopsy by indocyanine green retention fluorescence detection for inguinal lymph node staging of anal cancer: preliminary experience,” Annals of Surgical Oncology, vol. 17, no. 9, pp. 2357–2362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Inoue, M. Sawa, M. Tsujikawa, and F. Gomi, “Association between the efficacy of photodynamic therapy and indocyanine green angiography findings for central serous chorioretinopathy,” American Journal of Ophthalmology, vol. 149, no. 3, pp. 441–446.e2, 2010. View at Publisher · View at Google Scholar
  100. G. M. Dobre, A. Gh. Podoleanu, and R. B. Rosen, “Simultaneous optical coherence tomography-Indocyanine Green dye fluorescence imaging system for investigations of the eye's fundus,” Optics Letters, vol. 30, no. 1, pp. 58–60, 2005. View at Publisher · View at Google Scholar
  101. Y. Kang, J. Lee, K. Kwon, and C. Choi, “Application of novel dynamic optical imaging for evaluation of peripheral tissue perfusion,” International Journal of Cardiology, vol. 145, no. 3, pp. e99–e101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. Z. Jing, S. Ou, Y. Ban, Z. Tong, and Y. Wang, “Intraoperative assessment of anterior circulation aneurysms using the indocyanine green video angiography technique,” Journal of Clinical Neuroscience, vol. 17, no. 1, pp. 26–28, 2010. View at Publisher · View at Google Scholar
  103. Y. Tsujino, K. Mizumoto, Y. Matsuzaka, H. Niihara, and E. Morita, “Fluorescence navigation with indocyanine green for detecting sentinel nodes in extramammary Paget's disease and squamous cell carcinoma,” Journal of Dermatology, vol. 36, no. 2, pp. 90–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Physics in Medicine and Biology, vol. 23, no. 1, pp. 159–163, 1978. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Sharma, W. Wang, J. C. Rasmussen et al., “Quantitative imaging of lymph function,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 292, no. 6, pp. H3109–H3118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen et al., “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology, vol. 246, no. 3, pp. 734–741, 2008. View at Publisher · View at Google Scholar
  107. M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schects, G. H. M. Gijsbers, and J. J. Bonnier, “Optical properties of human blood vessel wall and plague,” Lasers in Surgery and Medicine, vol. 5, no. 3, pp. 235–237, 1985. View at Publisher · View at Google Scholar
  108. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties In vivo,” Medical Physics, vol. 19, no. 4, pp. 879–888, 1992. View at Publisher · View at Google Scholar
  109. P. Välisuo, I. Kaartinen, V. Tuchin, and J. Alander, “New closed-form approximation for skin chromophore mapping,” Journal of Biomedical Optics, vol. 16, no. 4, Article ID 046012, 2011. View at Publisher · View at Google Scholar
  110. P. Välisuo, Photonics simulation and modelling of skin for design of spectrocutometer, Ph.D. thesis, University of Vaasa, Department of Electrical Engineering and Energy Technology, Vaasa, Finland, 2011.
  111. S. Prahl, “Optical absorption of hemoglobin,” Tech. Rep., Oregon Medical Laser Center, Portland, Ore, USA, 1999. View at Google Scholar
  112. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 NM,” Journal of Biomedical Optics, vol. 4, no. 1, pp. 36–46, 1999. View at Google Scholar · View at Scopus
  113. R. Philip, A. Penzkofer, W. Bäumler, R. M. Szeimies, and C. Abels, “Absorption and fluorescence spectroscopic investigation of indocyanine green,” Journal of Photochemistry and Photobiology A, vol. 96, no. 1–3, pp. 137–148, 1996. View at Google Scholar
  114. J. F. R. Ilgner, T. Kawai, T. Shibata, T. Yamazoe, and M. Westhofen, “Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education,” in Stereoscopic Displays and Virtual Reality Systems XIII, A. J. Woods, Ed., vol. SPIE-6055, pp. 506–605, The International Society for Optical Engineering, San Jose, Calif, USA, 2006. View at Google Scholar
  115. S. C. Stein, M. G. Burnett, E. L. Zager, H. A. Riina, and S. S. Sonnad, “Completion angiography for surgically treted cerebral aneurysms: an economic analysis. clinical studies,” Neurosurgery, vol. 61, no. 6, pp. 1162–1169, 2007. View at Google Scholar
  116. A. Raabe, P. Nakaji, J. Beck et al., “Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery,” Journal of Neurosurgery, vol. 103, no. 6, pp. 982–989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatric Research, vol. 43, no. 1, pp. 34–39, 1998. View at Google Scholar
  118. J. G. de Oliveira, J. Beck, V. Seifert, M. J. Teixeira, and A. Raabe, “Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiogaphy,” Neurosurgery, vol. 61, no. 3, pp. 63–73, 2007. View at Google Scholar
  119. R. Dashti, A. Laakso, M. Niemelä, M. Porras, and J. Hernesniemi, “Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience,” Surgical Neurology, vol. 71, no. 5, pp. 543–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Li, Z. Lan, M. He, and C. You, “Assessment of microscope-integrated indocyanine green angiography during intracranial aneurysm surgery: a retrospective study of 120 patients,” Neurology India, vol. 57, no. 4, pp. 453–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. C.-Y. Ma, J.-X. Shi, H. -D. Wang, C.-H. Hang, H.-L. Cheng, and W. Wu, “Intraoperative indocyanine green angiography in intracranial aneurysm surgery: microsurgical clipping and revascularization,” Clinical Neurology and Neurosurgery, vol. 111, no. 10, pp. 840–846, 2009. View at Publisher · View at Google Scholar
  122. B. D. Killory, P. Nakaji, L. F. Gonzales, F. A. Ponce, S. D. Wait, and R. F. Spetzler, “Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery,” Neurosurgery, vol. 65, no. 3, pp. 456–462, 2009. View at Publisher · View at Google Scholar
  123. G. P. Colby, A. L. Coon, D. M. Sciubba, A. Bydon, P. E. Gailloud, and R. J. Tamargo, “Intraoperative indocyanine green angiography for obliteration of a spinal dural arteriovenous fistula: case report,” Journal of Neurosurgery, vol. 11, no. 6, pp. 705–709, 2009. View at Publisher · View at Google Scholar
  124. D. Hänggi, N. Etminan, and H. -J. Steiger, “The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae,” Neurosurgery, vol. 67, no. 4, pp. 1094–1103, 2010. View at Publisher · View at Google Scholar
  125. J. Woitzik, P. Horn, P. Vajkoczy, and P. Schmiedek, “Intraoperative control of extracranial-intracranial bypass patency by near-infrared indocyanine green videoangiography,” Journal of Neurosurgery, vol. 102, no. 4, pp. 692–698, 2005. View at Publisher · View at Google Scholar
  126. P. G. Peña-Tapia, A. Kemmling, M. Czabanka, P. Vajkoczy, and P. Schmiedek, “Identification of the optimal cortical target point for extracranial-intracranial bypass surgery in patients with hemodynamic cerebrovascular insufficiency,” Journal of Neurosurgery, vol. 108, no. 4, pp. 655–661, 2008. View at Publisher · View at Google Scholar
  127. M. Bruneau, E. Sauvageau, P. Nakaji et al., “Preliminary personal experiences with the application of near-infrared indocyanine green videoangiography in extracranial vertebral artery surgery,” Neurosurgery, vol. 66, no. 2, pp. 305–311, 2010. View at Publisher · View at Google Scholar
  128. S. Haga, S. Nagata, A. Uka, Y. Akagi, Y. Hamada, and T. Shono, “Near-infrared indocyanine green videoangiography for assessment of carotid endarterectomy,” Acta Neurochirurgica, vol. 153, no. 8, pp. 1641–1644, 2011. View at Publisher · View at Google Scholar
  129. M. A. Kamp, P. Slotty, B. Turowski et al., “Microscope integrated quantitative analysis of intra-operative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients,” Neurosurgery. In press. View at Publisher · View at Google Scholar
  130. C. Detter, D. Russ, A. Iffland et al., “Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control,” Heart Surgery Forum, vol. 5, no. 4, pp. 364–369, 2002. View at Google Scholar
  131. G. D'Ancona, H. L. Karamanoukian, M. Ricci, S. Schmid, J. Bergsland, and T. A. Salerno, “Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting,” European Journal of Cardio-thoracic Surgery, vol. 17, no. 3, pp. 287–293, 2000. View at Publisher · View at Google Scholar
  132. L. Balacumaraswami and D. P. Taggart, “Intraoperative imaging techniques to assess coronary artery bypass graft patency,” Annals of Thoracic Surgery, vol. 83, no. 6, pp. 2251–2257, 2007. View at Publisher · View at Google Scholar
  133. C. Detter, S. Wipper, D. Russ et al., “Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis,” Circulation, vol. 116, no. 9, pp. 1007–1014, 2007. View at Publisher · View at Google Scholar
  134. F. D. Rubens, M. Ruel, and S. E. Fremes, “A new and simplified method for coronary and graft imaging during CABG,” Heart Surgery Forum, vol. 5, no. 2, pp. 141–144, 2002. View at Google Scholar · View at Scopus
  135. D. P. Taggart, B. Choudhary, K. Anastasiadis, Y. Abu-Omar, L. Balacumaraswami, and D. W. Pigott, “Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization,” Annals of Thoracic Surgery, vol. 75, no. 3, pp. 870–873, 2003. View at Publisher · View at Google Scholar
  136. O. Reuthebuch, A. Häussler, M. Genoni et al., “Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting,” Chest, vol. 125, no. 2, pp. 418–424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. L. Balacumaraswami, Y. Abu-Omar, B. Choudhary, D. Pigott, and D. P. Taggart, “A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 2, pp. 315–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Takahashi, T. Ishikawa, K. Higashidani, and H. Katoh, “SPY: an innovative intra-operative imaging system to evaluate graft patency during off-pump coronary artery bypass grafting,” Interactive Cardiovascular and Thoracic Surgery, vol. 3, no. 3, pp. 479–483, 2004. View at Publisher · View at Google Scholar
  139. N. D. Desai, S. Miwa, D. Kodama et al., “Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique,” Journal of the American College of Cardiology, vol. 46, no. 8, pp. 1521–1525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. N. D. Desai, Assessment of operative strategies to improve coronary bypass graft patency, Ph.D. thesis, University of Toronto, Toronto, Canada, 2008.
  141. N. Unno, K. Inuzuka, M. Suzuki et al., “Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema,” Journal of Vascular Surgery, vol. 45, no. 5, pp. 1016–1021, 2007. View at Publisher · View at Google Scholar
  142. Y. Kang, J. Lee, K. Kwon, and C. Choi, “Dynamic fluorescence imaging of indocyanine green for eable and sensitive diagnosis of peripheral vascular insufficiency,” Microvascular Research, vol. 80, no. 3, pp. 552–555, 2010. View at Google Scholar
  143. Y. Kang, J. Lee, Y. An, J. Jeon, and C. Choi, “Segmental analysis of indocyanine green pharmacokinetics for the reliable diagnosis of functional vascular insufficiency,” Journal of Biomedical Optics, vol. 16, no. 3, Article ID 030504, 2011. View at Publisher · View at Google Scholar
  144. A. Zimmermann, C. Roenneberg, H. Wendorff, T. Holzbach, R. E. Giunta, and H. H. Eckstein, “Early postoperative detection of tissue necrosis in amputation stumps with indocyanine green fluorescence angiography,” Vascular and Endovascular Surgery, vol. 44, no. 4, pp. 269–273, 2010. View at Publisher · View at Google Scholar
  145. J. C. Wuestenfeld, J. Herold, U. Niese et al., “Indocyanine green angiography: a new method to quantify collateral flow in mice,” Journal of Vascular Surgery, vol. 48, no. 5, pp. 1315–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Vinegoni, I. Botnaru, E. Aikawa et al., “Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques,” Science Translational Medicine, vol. 3, no. 84, Article ID 84ra45, 2011. View at Publisher · View at Google Scholar
  147. H. Leppikangas, J. J. Tenhunen, L. Lindgren, J. -P. Salenius, and E. Ruokonen, “Effects of levosimendan on indocyanine green plasma disappearance rate and the gastric mucosal-arterial pCO2 gradient in abdominal aortic aneurysm surgery,” Acta Anaesthesiologica Scandinavica, vol. 52, no. 6, pp. 785–792, 2008. View at Publisher · View at Google Scholar
  148. M. Kikuchi and K. Hosokawa, “Visualized sclerotherapy of varicose veins,” Dermatologic Surgery, vol. 36, no. 2, pp. 1050–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, and R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Letters, vol. 98, no. 2, pp. 169–173, 1996. View at Publisher · View at Google Scholar
  150. W. R. Chen, W. G. Zhu, J. R. Dynlacht, H. Liu, and R. E. Nordquist, “Long-term tumor resistance induced by laser photo-immunotherapy,” International Journal of Cancer, vol. 81, no. 5, pp. 808–812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Li, G. L. Ferrel, M. C. Guerra et al., “Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients,” Photochemical and Photobiological Sciences, vol. 10, no. 5, pp. 817–821, 2011. View at Publisher · View at Google Scholar
  152. R. H. Mellor, A. W. B. Stanton, P. Azarbod, M. D. Sherman, J. R. Levick, and P. S. Mortimer, “Enhanced cutaneous lymphatic network in the forearms of women with postmastectomy oedema,” Journal of Vascular Research, vol. 37, no. 6, pp. 501–512, 2000. View at Publisher · View at Google Scholar
  153. H. Lim and N. Soter, Clinical Photomedicine, Marcel Dekker Inc., New York, NY, USA, 1993.
  154. E. Tanaka, H. S. Choi, H. Fujii, M. G. Bawendi, and J. V. Frangioni, “Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping,” Annals of Surgical Oncology, vol. 13, no. 12, pp. 1671–1681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality In vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology, vol. 255, no. 2, pp. 442–450, 2010. View at Publisher · View at Google Scholar
  156. N. Ito, M. Fukuta, T. Tokushima, K. Nakai, and S. Ohgi, “Sentinel node navigation surgery using indocyanine green in patients with lung cancer,” Surgery Today, vol. 34, no. 7, pp. 581–585, 2004. View at Google Scholar
  157. S. Karrer, C. Abels, W. Bäumler, M. Steinbauer, M. Landthaler, and R. M. Szeimies, “Photochemotherapie von kutanen Rektumkarzinom-Metastasen mit Indocyaningrun [photochemotherapy with indocyanine green in cutaneous metastases of rectal carcinoma],” Deutsche medizinische Wochenschrift, vol. 122, no. 37, pp. 1111–1114, 1997. View at Google Scholar
  158. C. Abels, S. Karrer, W. Bäumler, A. E. Goetz, M. Landthaler, and R.-M. Szeimies, “Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi's sarcoma,” British Journal of Cancer, vol. 77, no. 6, pp. 1021–1024, 1998. View at Google Scholar
  159. W. Baumler, C. Abels, S. Karrer et al., “Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light,” British Journal of Cancer, vol. 80, no. 3-4, pp. 360–363, 1999. View at Publisher · View at Google Scholar
  160. L. M. A. Crane, G. Themelis, H. J. G. Arts et al., “Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results,” Gynecologic Oncology, vol. 120, no. 2, pp. 291–295, 2011. View at Publisher · View at Google Scholar
  161. S. Inoue, H. Shiina, N. Arichi et al., “Identification of lymphatic pathway involved in the spreading of prostate cancer by fluorescence navigation approach with intraoperatively injected indocyanine green,” Journal of the Canadian Urological Association, vol. 5, no. 4, pp. 254–259, 2011. View at Publisher · View at Google Scholar
  162. M. Hutteman, J. S. D. Mieog, J. R. van der Vorst et al., “Randomized, double-blind comparison of indocyanine green with or without albumin premixing for near-infrared fluorescence imaging of sentinel lymph nodes in breast cancer patients,” Breast Cancer Research and Treatment, vol. 127, no. 1, pp. 163–170, 2011. View at Publisher · View at Google Scholar
  163. N. Unno, M. Nishiyama, M. Suzuki et al., “A novel method of measuring human lymphatic pumping using indocyanine green fluorescence lymphography,” Journal of Vascular Surgery, vol. 52, no. 4, pp. 946–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. C. M. Leevy, C. L. Mendenhall, W. Lesko, and M. M. Howard, “Estimation of hepatic blood flow with indocyanine green,” The Journal of Clinical Investigation, vol. 41, pp. 1169–1179, 1962. View at Google Scholar
  165. A. El-Desoky, A. M. Seifalian, M. Cope, D. T. Delpy, and B. R. Davidson, “Experimental study of liver dysfunction evaluated by direct indocyanine green clearance using near infrared spectroscopy,” British Journal of Surgery, vol. 86, no. 8, pp. 1005–1011, 1999. View at Publisher · View at Google Scholar
  166. L. R. Jiao, A. A. El-Desoky, A. M. Seifalian, N. Habib, and B. R. Davidson, “Effect of liver blood flow and function on hepatic indocyanine green clearance measured directly in a cirrhotic animal model,” British Journal of Surgery, vol. 87, no. 5, pp. 568–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  167. L. R. Jiao, A. A. El-Desoky, A. M. Seifalian, N. Habib, and B. R. Davidson, “Effect of liver blood flow and function on hepatic indocyanine green clearance measured directly in a cirrhotic animal model,” British Journal of Surgery, vol. 87, no. 5, pp. 568–574, 2000. View at Publisher · View at Google Scholar
  168. T. Hashimoto, K. Miki, H. Imamura et al., “Sinusoidal perfusion in the veno-occlusive region of living liver donors evaluated by indocyanine green and near-infraredspectroscopy,” Liver Transplantation, vol. 14, no. 6, pp. 872–880, 2008. View at Publisher · View at Google Scholar
  169. T. Aoki, D. Yasuda, Y. Shimizu et al., “Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection,” World Journal of Surgery, vol. 32, no. 8, pp. 1763–1767, 2008. View at Publisher · View at Google Scholar
  170. T. Ishizawa, N. Fukushima, J. Shibahara et al., “Real-time identification of liver cancers by using indocyanine green fluorescent imaging,” Cancer, vol. 115, no. 11, pp. 2491–2504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  171. K. Gotoh, T. Yamada, O. Ishikawa et al., “A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation,” Journal of Surgical Oncology, vol. 100, no. 1, pp. 75–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  172. H. L. Jun, W. R. Keun, M. C. Kook et al., “Feasibility of laparoscopic sentinel basin dissection for limited resection in early gastric cancer,” Journal of Surgical Oncology, vol. 98, no. 5, pp. 331–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. H. L. Jun, W. R. Keun, M. -C. Kook et al., “Feasibility of laparoscopic sentinel basin dissection for limited resection in early gastric cancer,” Journal of Surgical Oncology, vol. 98, no. 5, pp. 331–335, 2008. View at Publisher · View at Google Scholar
  174. Y.-J. Lee, W. S. Ha, S. T. Park, S. K. Choi, S. C. Hong, and J. W. Park, “Which biopsy method is more suitable between a basin dissection and pick-up biopsy for sentinel nodes in laparoscopic sentinel-node navigation surgery (LSNNS) for gastric cancer?” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 18, no. 3, pp. 357–363, 2008. View at Publisher · View at Google Scholar
  175. Y. Tajima, K. Yamazaki, Y. Masuda et al., “Sentinel node mapping guided by indocyanine green fluorescence imaging in gastric cancer,” Annals of Surgery, vol. 249, no. 1, pp. 58–62, 2009. View at Publisher · View at Google Scholar
  176. R. A. Cahill, M. Anderson, L. M. Wang, I. Lindsey, C. Cunningham, and N. J. Mortensen, “Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia,” Surgical Endoscopy. In press. View at Publisher · View at Google Scholar
  177. K. Nagata, S. Endo, E. Hidaka, J. I. Tanaka, S. E. Kudo, and A. Shiokawa, “Laparoscopic sentinel node mapping for colorectal cancer using infrared ray laparoscopy,” Anticancer Research, vol. 26, no. 3, pp. 2307–2311, 2006. View at Google Scholar · View at Scopus
  178. K. Harada, M. Miwa, T. Fukuyo, S. Watanabe, S. Enosawa, and T. Chiba, “ICG fluorescence endoscope for visualization of the placental vascular network,” Minimally Invasive Therapy and Allied Technologies, vol. 18, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. K. Harada, M. Miwa, T. Fukuyo, S. Watanabe, S. Enosawa, and T. Chiba, “ICG fluorescence endoscope for visualization of the placental vascular network,” Minimally Invasive Therapy and Allied Technologies, vol. 18, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar
  180. I. Miyashiro, K. Kishi, M. Yano et al., “Laparoscopic detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging,” Surgical Endoscopy and Other Interventional Techniques, vol. 25, no. 5, pp. 1672–1676, 2011. View at Publisher · View at Google Scholar
  181. S.-H. Jeong, Y.-J. Lee, E.-H. Lee et al., “Gastric lymphatic basin dissection for sentinel node biopsy using hybrid natural orifice transluminan endoscopic surgery (NOTES),” Minimally Invasive Therapy & Allied Technologies, vol. 19, no. 5, pp. 299–303, 2010. View at Google Scholar
  182. M. J. Tunon, P. Gonzalez, F. Jorquera, A. Llorente, M. Gonzalo-Orden, and J. Gonzalez-Gallego, “Liver blood flow changes during laparoscopic surgery in pigs: a study of hepatic indocyanine green removal,” Surgical Endoscopy, vol. 13, no. 7, pp. 668–672, 1999. View at Publisher · View at Google Scholar
  183. K. Murata, K. Shiraki, S. Kamei, K. Takase, and T. Nakano, “Laparoscopic findings in an adult case of Alagille syndrome,” Endoscopy, vol. 32, no. 7, pp. 536–538, 2000. View at Publisher · View at Google Scholar
  184. S. Hariharan, Surgical fluorescence imager for visualizing anteriorly placed biliary structures, in-vivo during human cholecystectomy, Ph.D. thesis, The University of Texas, Arlington, Tex, USA, 2008.
  185. T. Ishizawa, Y. Bandai, M. Ijichi, J. Kaneko, K. Hasegawa, and N. Kokudo, “Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy,” British Journal of Surgery, vol. 97, no. 9, pp. 1369–1377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. T. Ishizawa, Y. Bandai, M. Ijichi, J. Kaneko, K. Hasegawa, and N. Kokudo, “Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy,” British Journal of Surgery, vol. 97, no. 9, pp. 1369–1377, 2010. View at Publisher · View at Google Scholar
  187. A. Matsui, E. Tanaka, H. S. Choi et al., “Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents,” Surgery, vol. 148, no. 1, pp. 87–95, 2010. View at Publisher · View at Google Scholar
  188. N. Tagaya, M. Shimoda, M. Kato et al., “Intraoperative exploration of biliary anatomy using fluorescence imaging of indocyanine green in experimental and clinical cholecystectomies,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 17, no. 5, pp. 595–600, 2010. View at Publisher · View at Google Scholar
  189. F. Ikeda, K. Yamamoto, S. Fujioka et al., “Laparoscopic findings in primary sclerosing cholangitis,” Endoscopy, vol. 33, no. 3, pp. 267–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  190. F. Ikeda, K. Yamamoto, S. Fujioka et al., “Laparoscopic findings in primary sclerosing cholangitis,” Endoscopy, vol. 33, no. 3, pp. 267–270, 2001. View at Publisher · View at Google Scholar
  191. H. Mothes, T. Dönicke, R. Friedel, M. Simon, E. Markgraf, and O. Bach, “Indocyanine-green fluorescence video angiography used clinically to evaluate tissue perfusion in microsurgery,” Journal of Trauma, vol. 57, no. 5, pp. 1018–1024, 2004. View at Publisher · View at Google Scholar
  192. L. Prantl, S. Schmitt, S. Geis et al., “Contrast harmonic ultrasound and indocyanine-green fluorescence video angiography for evaluation of dermal and subdermal microcirculation in free parascapular flaps,” Clinical Hemorheology and Microcirculation, vol. 38, no. 2, pp. 105–118, 2008. View at Google Scholar
  193. E. M. Jung, L. Prantl, A. G. Schreyer et al., “New perfusion imaging of tissue transplants with Contrast Harmonic Ultrasound Imaging (CHI) and Magnetic Resonance Imaging (MRI) in comparison with laser-induced Indocyanine Green (ICG) fluorescence angiography,” Clinical Hemorheology and Microcirculation, vol. 43, no. 1-2, pp. 19–33, 2009. View at Publisher · View at Google Scholar
  194. H. Mothes, T. Dinkelaker, T. Dönicke, R. Friedel, G. O. Hofmann, and O. Bach, “Outcome prediction in microsurgery by quantitative evaluation of perfusion using ICG fluorescence angiography,” Journal of Hand Surgery, vol. 34, no. 2, pp. 238–246, 2009. View at Publisher · View at Google Scholar
  195. M. I. Newman and M. C. Samson, “The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction,” Journal of Reconstructive Microsurgery, vol. 25, no. 1, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. A. Matsui, B. T. Lee, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Predictive capability of near-Infrared fluorescence angiography in submental perforator flap survival,” Plastic and Reconstructive Surgery, vol. 126, no. 5, pp. 1518–1527, 2010. View at Publisher · View at Google Scholar
  197. R. E. Giunta, T. Holzbach, C. Taskov et al., “Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model,” British Journal of Plastic Surgery, vol. 58, no. 5, pp. 695–701, 2005. View at Publisher · View at Google Scholar
  198. B. T. Lee, A. Matsui, M. Hutteman et al., “Intraoperative near-infrared fluorescence imaging in perforator flap reconstruction: current research and early clinical experience,” Journal of Reconstructive Microsurgery, vol. 26, no. 1, pp. 59–65, 2010. View at Publisher · View at Google Scholar
  199. Z.-Z. Jing, S.-M. Chang, M. R. You, and G -R. Yu, “Venous drainage in retrograde island flap: an experimental study using fluorescence tracing technique,” Microsurgery, vol. 30, no. 1, pp. 50–54, 2010. View at Publisher · View at Google Scholar
  200. C. Holm, M. Mayr, E. Hofter, U. Dornseifer, and M. Ninkovic, “Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study,” Microsurgery, vol. 29, no. 7, pp. 509–514, 2009. View at Publisher · View at Google Scholar
  201. I. A. Pestana, B. Coan, D. Erdmann, J. Marcus, L. S. Levin, and M. R. Zenn, “Early experience with fluorescent angiography in free-tissue transfer reconstruction,” Plastic and Reconstructive Surgery, vol. 123, no. 4, pp. 1239–1244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  202. C. Holm, U. Dornseifer, G. Sturtz, and M. Ninkovic, “Sensitivity and specificity of ICG angiography in free flap reexploration,” Journal of Reconstructive Microsurgery, vol. 26, no. 5, pp. 311–316, 2010. View at Publisher · View at Google Scholar
  203. C. Holm, J. Tegeler, M. Mayr, A. Becker, U. J. Pfeiffer, and W. Mühlbauer, “Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience,” Microsurgery, vol. 22, no. 7, pp. 278–287, 2002. View at Publisher · View at Google Scholar · View at Scopus
  204. C. Holm, J. Tegeler, M. Mayr, A. Becker, U. J. Pfeiffer, and W. Muhlbauer, “Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience,” Microsurgery, vol. 22, no. 7, pp. 278–287, 2002. View at Publisher · View at Google Scholar
  205. K. G. Krishnan, G. Schackert, and R. Steinmeier, “The role of near-infrared angiography in the assessment of post-operative venous congestion in random pattern, pedicled island and free flaps,” British Journal of Plastic Surgery, vol. 58, no. 3, pp. 330–338, 2005. View at Publisher · View at Google Scholar
  206. P. Lamby, L. Prantl, S. Gais et al., “Evaluation of the vascular integrity of free flaps based on microcirculation imaging techniques,” Clinical Hemorheology and Microcirculation, vol. 39, no. 1–4, pp. 253–263, 2008. View at Publisher · View at Google Scholar
  207. C. S. Betz, S. Zhorzel, H. Schachenmayr et al., “Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited Indocyanine Green: preliminary results,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 12, pp. 1602–1608, 2009. View at Publisher · View at Google Scholar
  208. C. Holm, M. Mayr, E. Höfter, A. Becker, U. J. Pfeiffer, and W. Mühlbauer, “Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green,” British Journal of Plastic Surgery, vol. 55, no. 8, pp. 635–644, 2002. View at Publisher · View at Google Scholar
  209. A. Suzuki, M. Fujiwara, T. Mizukami, and H. Fukamizu, “Delayed distally-based super sural flap: evaluation by indocyanine green fluorescence angiography,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 61, no. 4, pp. 467–469, 2008. View at Publisher · View at Google Scholar
  210. T. Holzbach, I. Neshkova, D. Vlaskou et al., “Searching for the right timing of surgical delay: angiogenesis, vascular endothelial growth factor and perfusion changes in a skin-flap model,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 11, pp. 1534–1542, 2009. View at Publisher · View at Google Scholar
  211. S. Yamaguchi, F. De Lorenzi, J. Y. Petit et al., “The ‘perfusion map’ of the unipedicled TRAM flap to reduce postoperative partial necrosis,” Annals of Plastic Surgery, vol. 53, no. 3, pp. 205–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  212. C. Holm, M. Mayr, E. Hofter, N. Raab, and M. Ninkovic, “Interindividual variability of the SIEA angiosome: effects on operative strategies in breast reconstruction,” Plastic and Reconstructive Surgery, vol. 122, no. 6, pp. 1612–1620, 2008. View at Publisher · View at Google Scholar
  213. J. Quilichini, P. Le Masurier, and T. Guihard, “[Increasing the reliability of SIEA flap using peroperative fluorescent angiography with indocyanine green in breast reconstruction],” Annales de Chirurgie Plastique Esthetique, vol. 55, no. 6, pp. 531–538, 2010 (French). View at Google Scholar
  214. B. T. Lee, M. Hutteman, S. Gioux et al., “The fLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plastic and Reconstructive Surgery, vol. 126, no. 5, pp. 1472–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  215. B. S. Francisco, M. A. Kerr-Valentic, and J. P. Agarwal, “Laser-assisted indocyanine green angiography and DIEP breast reconstruction,” Plastic and Reconstructive Surgery, vol. 125, no. 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. E. Komorowska-Timek and G. C. Gurtner, “Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction,” Plastic and Reconstructive Surgery, vol. 125, no. 4, pp. 1065–1073, 2010. View at Publisher · View at Google Scholar
  217. L.-P. Kamolz, H. Andel, W. Haslik et al., “Indocyanine green video angiographies help to identify burns requiring operation,” Burns, vol. 29, no. 8, pp. 785–791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” Journal of Burns and Wounds, vol. 15, no. 5, p. e2, 2006. View at Google Scholar
  219. L.-P. Kamolz, H. Andel, T. Auer, G. Meissl, and M. Frey, “Evaluation of skin perfusion by use of indocyanine green video angiography: rational design and planning of trauma surgery,” Journal of Trauma, vol. 61, no. 3, pp. 635–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  220. C. Hoffmann, F. Compton, J. H. Schafer et al., “Intraoperative assessment of kidney allgraft perfusion by laser-assisted indocyanine green fluorescence videography,” Transplantation Proceedings, vol. 42, no. 5, pp. 1526–1530, 2010. View at Google Scholar
  221. T. Sawada, M. Solly, J. Kita, M. Shimoda, and K. Kubota, “An alternative tool for intraoperative assessment of renal vasculature after revascularization of a transplanted kidney,” American Journal of Surgery, vol. 199, no. 6, pp. e67–e69, 2010. View at Publisher · View at Google Scholar
  222. S. Mizuno and S. Isaji, “Indocyanine green (ICG) fluorescence imaging-guided cholangiography for donor hepatectomy in living donor liver transplantation,” American Journal of Transplantation, vol. 10, no. 12, pp. 2725–2726, 2010. View at Publisher · View at Google Scholar
  223. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” Journal of Biomedical Optics, vol. 7, no. 3, pp. 464–470, 2002. View at Publisher · View at Google Scholar · View at Scopus
  224. T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Applied Optics, vol. 46, no. 10, pp. 1604–1614, 2007. View at Publisher · View at Google Scholar
  225. T. Fischer, B. Ebert, J. Voigt et al., “Detection of rheumatoid arthritis using non-specific contrast enhanced fluorescence imaging,” Academic Radiology, vol. 17, no. 3, pp. 375–381, 2010. View at Publisher · View at Google Scholar
  226. L. L. Gompels, N. H. Lim, T. Vincent, and E. M. Paleolog, “In vivo optical imaging in arthritis-an enlightening future?” Rheumatology, vol. 49, no. 8, Article ID keq012, pp. 1436–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. T. Dziekan, C. Weissbach, J. Voigt et al., “Detection of rheumatoid arthritis by evaluation of normalized variances of fluorescence time correlation functions,” Journal of Biomedical Optics, vol. 16, no. 7, Article ID 076015, 2011. View at Publisher · View at Google Scholar
  228. K. T. Schomacker, A. Torri, D. R. Sandison, R. L. Sheridan, and N. S. Nishioka, “Biodistribution of indocyanine green in a porcine burn model: light and fluorescence microscopy,” Journal of Trauma, vol. 43, no. 5, pp. 813–819, 1997. View at Google Scholar · View at Scopus
  229. H. Habazettl, D. Athanasopoulos, W. M. Kuebler et al., “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” Journal of Applied Physiology, vol. 108, no. 4, pp. 962–967, 2010. View at Google Scholar
  230. S. L. Jacques, A. Barofsky, H. Shangguan, S. A. Prahl, and K. W. Gregory, “Laser welding of biomaterials stained with indocyanine green to tissues,” in Laser-Tissue Interactions VIII, S. L. Jacques, Ed., vol. SPIE-2975, pp. 54–61, The International Society for Optical Engineering, Bellingham, WA, San Jose, Calif, USA, 1997. View at Google Scholar
  231. W. Small IV, Thermal and molecular investigation of laser tissue welding, Ph.D. thesis, University of California, Davis, Calif, USA, 1998.
  232. K. Ogan, L. Jacomides, H. Saboorian et al., “Sutureless laparoscopic heminephrectomy using laser tissue soldering,” Journal of Endourology, vol. 17, no. 5, pp. 295–300, 2003. View at Google Scholar · View at Scopus
  233. P. Oskoui, I. Stadler, and R. J. Lanzafame, “A preliminary study of laser tissue soldering as arterial wall reinforcement in an acute experimental aneurysm model,” Lasers in Surgery and Medicine, vol. 32, no. 5, pp. 346–348, 2003. View at Publisher · View at Google Scholar
  234. G. S. Omar, M. Wilson, and S. P. Nair, “Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light,” BMC Microbiology, vol. 8, p. 111, 2008. View at Publisher · View at Google Scholar
  235. M. E. Khosroshahi, M. S. Nourbakhsh, S. Saremi, and F. Tabatabaee, “Characterization of skin tissue soldering using diode laser and indocyanine green: In vitro studies,” Lasers in Medical Science, vol. 25, no. 2, pp. 207–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  236. F. Rossi, P. Matteini, F. Ratto, L. Menabuoni, I. Lenzetti, and R. Pini, “All Laser' corneal surgery by combination of femtosecond laser ablation and laser tissue welding,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, Ed., pp. 800–810, CRC Press, London, UK, 2010. View at Google Scholar
  237. H. Ö. Tabakoǧlu and M. Gülsoy, “In vivo comparison of near infrared lasers for skin welding,” Lasers in Medical Science, vol. 25, no. 3, pp. 411–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  238. J. Shahbazi, H. Marçal, S. Watson, D. Wakefield, M. Sarris, and L. J. R. Foster, “Sutureless sealing of penetrating corneal wounds using a laser-activated thin film adhesive,” Lasers in Surgery and Medicine, vol. 43, no. 6, pp. 490–498, 2011. View at Publisher · View at Google Scholar
  239. I. Y. Yanina, V. A. Bochko, J. T. Alander, and V. V. Tuchin, “Optical image analysis of fat cells for indocyanine green mediated near-infrared laser treatment,” Laser Physics Letters, vol. 8, no. 9, pp. 684–690, 2011. View at Publisher · View at Google Scholar
  240. Y. P. Krespi and V. Kizhner, “Phototherapy for chronic rhinosinusitis,” Lasers in Surgery and Medicine, vol. 43, no. 3, pp. 187–191, 2011. View at Publisher · View at Google Scholar
  241. W. Hongcharu, C. R. Taylor, Y. Chang, D. Aghassi, K. Suthamjariya, and R. R. Anderson, “Topical ALA-photodynamic therapy for the treatment of acne vulgaris,” Journal of Investigative Dermatology, vol. 115, no. 2, pp. 183–192, 2000. View at Publisher · View at Google Scholar
  242. V. V. Tuchin, E. A. Genina, A. N. Bashkatov, G. V. Simonenko, O. D. Odoevskaya, and G. B. Altshuler, “A pilot study of ICG laser therapy of acne vulgaris: photodynamic and photothermolysis treatment,” Lasers in Surgery and Medicine, vol. 33, no. 5, pp. 296–310, 2003. View at Publisher · View at Google Scholar
  243. E. A. Genina, A. N. Bashkatov, G. V. Simonenko, O. D. Odoevskaya, V. V. Tuchin, and G. B. Altshuler, “Low-intensity indocyanine-green laser phototherapy of acne vulgaris: pilot study,” Journal of Biomedical Optics, vol. 9, no. 4, pp. 828–834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  244. N. Price, M. R. Gottfried, E. Clary et al., “Safety and efficacy of India ink and indocyanine green as colonic tattooing agents,” Gastrointestinal Endoscopy, vol. 51, no. 4, pp. 438–442, 2000. View at Google Scholar
  245. E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin et al., “In vitro and in vivo study of dye diffusion into the human skin and hair follicles,” Journal of Biomedical Optics, vol. 7, no. 3, pp. 471–477, 2002. View at Publisher · View at Google Scholar
  246. N. Miyoshi, M. Ohue, S. Noura et al., “Surgical usefulness of indocyanine green as an alternative to India ink for endoscopic marking,” Surgical Endoscopy and Other Interventional Techniques, vol. 23, no. 2, pp. 347–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  247. M. Watanabe, A. Tsunoda, K. Narita, M. Kusano, and M. Miwa, “Colonic tattooing using fluorescence imaging with light-emitting diode-activated indocyanine green: a feasibility study,” Surgery Today, vol. 39, no. 3, pp. 214–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  248. S. E. Boddington, T. D. Henning, P. Jha et al., “Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase,” Cell Transplantation, vol. 19, no. 1, pp. 55–65, 2010. View at Publisher · View at Google Scholar
  249. K. Kasuya, K. Sugimoto, B. Kyo et al., “Ultrasonography-guided hepatic tumor resection using a real-time virtual sonography with indocyanine green navigation (with videos),” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 18, no. 3, pp. 380–385, 2011. View at Publisher · View at Google Scholar
  250. R. Esenaliev, A. Oraevsky, S. Rastegar, C. Frederickson, and M. Motamedi, “Mechanism of dye-enhanced pulsed laser ablation of hard tissues: implications for dentistry,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 2, no. 4, pp. 836–846, 1996. View at Publisher · View at Google Scholar
  251. T. Kitai, M. Kawashima, H. Fujii, S. Mashima, and Y. Shimahara, “Indocyanine green fluorescence monitoring of perineal wound contamination in abdominoperineal resection: a preliminary report,” Surgery Today, vol. 41, no. 8, pp. 1037–1040, 2011. View at Publisher · View at Google Scholar
  252. W. Li, D. Wang, J. Qin et al., “Generation of functional hepatocytes from mouse induced pluripotent stem cells,” Journal of Cellular Physiology, vol. 222, no. 3, pp. 492–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  253. M. Zhou, P. Li, L. Tan, S. Qu, Q. L. Ying, and H. Song, “Differentiation of mouse embryonic stem cells into hepatocytes induced by a combination of cytokines and sodium butyrate,” Journal of Cellular Biochemistry, vol. 109, no. 3, pp. 606–614, 2010. View at Publisher · View at Google Scholar
  254. K. Koivuporras, Enhancing a neurosurgical imaging system with a PCbased video processing solution, M.S. thesis, University of Vaasa, Ostrobothnia, Finland, 2011.
  255. J. Oda, Y. Kato, S. F. Chen et al., “Intraoperative near-infrared indocyanine green-videoangiography (ICG-VA) and graphic analysis of fluorescence intensity in cerebral aneurysm surgery,” Journal of Clinical Neuroscience, vol. 18, no. 8, pp. 1097–1100, 2011. View at Publisher · View at Google Scholar
  256. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nature Photonics, vol. 1, no. 9, pp. 526–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  257. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes In vivo,” Journal of Biomedical Optics, vol. 12, no. 5, Article ID 051503, 2007. View at Publisher · View at Google Scholar
  258. Y. Kang, J. Lee, K. Kwon, and C. Choi, “Assessment of peripheral tissue perfusion by optical dynamic fluorescence imaging and nonlinear regression modeling,” in Photonic Therapeutics and Diagnostics VI, N. Kollias, Ed., vol. SPIE-7548, pp. 7548L–75483L, The International Society for Optical Engineering, Bellingham, Wash, USA, 2010. View at Google Scholar
  259. M. Diop, K. Verdecchia, T.-Y. Lee, and K. St. Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved nearinfrared technique to yield absolute cerebral blood flow measurements,” Biomedical Optics Express, vol. 2, no. 7, pp. 2068–2082, 2011. View at Google Scholar
  260. P. Ferroli, P. Nakaji, F. Acerbi, E. Albanese, and G. Broggi, “Indocyanine green (ICG) temporary clipping test to assess collateral circulation before venous sacrifice,” World Neurosurgery, vol. 75, no. 1, pp. 122–125, 2011. View at Publisher · View at Google Scholar
  261. X. Liu, F. Liu, and J. Bai, “A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 6, pp. 1602–1611, 2011. View at Publisher · View at Google Scholar
  262. A. Rodríguez-Hernández and M. T. Lawton, “Flash fluorescence with icg videoangiography to identify the recipient artery for bypass with distal middle cerebral artery aneurysms: operative technique,” Neurosurgery. In press. View at Publisher · View at Google Scholar
  263. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2767–2772, 2000. View at Publisher · View at Google Scholar
  264. B. S. Sandanaraj, R. Kneuer, and N. Beckmann, “Optical and magnetic resonance imaging as complementary modalities in drug discovery,” Future Medicinal Chemistry, vol. 2, no. 3, pp. 317–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  265. A. Ashokan, P. Chandran, A. R. Sadanandan et al., “Development and haematotoxicological evaluation of doped hydroxyapatite based multimodal nanocontrast agent for near-infrared, magnetic resonance and X-ray contrast imaging,” Nanotoxicology. In press.
  266. Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Physics in Medicine and Biology, vol. 56, no. 15, pp. 4731–4747, 2011. View at Publisher · View at Google Scholar
  267. X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Optics Express, vol. 18, no. 6, pp. 6300–6314, 2010. View at Publisher · View at Google Scholar
  268. M. Goetz, I. Deris, M. Vieth et al., “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” Journal of Hepatology, vol. 53, no. 1, pp. 84–90, 2010. View at Publisher · View at Google Scholar
  269. J. S.D. Mieog, S. L. Troyan, M. Hutteman et al., “Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer,” Annals of Surgical Oncology, vol. 18, no. 9, pp. 2483–2491, 2011. View at Publisher · View at Google Scholar
  270. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Letters, vol. 7, no. 2, pp. 496–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  271. E. S. Tuchina, V. V. Tuchin, B. N. Khlebtsov, and N. G. Khlebtsov, “Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation,” Quantum Electronics, vol. 41, no. 4, pp. 354–359, 2011. View at Publisher · View at Google Scholar
  272. T. Buckle, A. C. van Leeuwen, P. T. K. Chin et al., “A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node,” Nanotechnology, vol. 21, no. 35, Article ID 355101, 2010. View at Publisher · View at Google Scholar
  273. Y. Ashitate, A. Stockdale, H. S. Choi, R. G. Laurence, and J. V. Frangioni, “Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy,” Journal of Surgical Research. In press. View at Publisher · View at Google Scholar
  274. S. Tobis, J. Knopf, C. Silvers et al., “Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors,” Journal of Urology, vol. 186, no. 1, pp. 47–52, 2011. View at Publisher · View at Google Scholar
  275. J. T. Alander, “A review of indocyanine green contrast agent in surgery,” in Proceedings of the 14th International Conference in Near Infrared Spectroscopy, S. Sarangwong, S. Kasemsumran, W. Thanapase, and P. Williams, Eds., pp. 615–619, IM Publications LLP, Bangkok, Thailand, November 2009.