Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2013, Article ID 609274, 20 pages
http://dx.doi.org/10.1155/2013/609274
Research Article

Learned Shrinkage Approach for Low-Dose Reconstruction in Computed Tomography

Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

Received 17 March 2013; Accepted 2 June 2013

Academic Editor: Jun Zhao

Copyright © 2013 Joseph Shtok et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. La Rivière, J. Bian, and P. A. Vargas, “Penalized-likelihood sinogram restoration for computed tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp. 1022–1036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, Berlin, Germany, 2010.
  3. F. Natterer and F. Wübbeling, “Mathematical methods in image reconstruction,” SIAM Monographs on Mathematical Modeling and Computation, pp. 1–207, 2001. View at Google Scholar · View at Scopus
  4. P. J. La Rivière, J. Bian, and P. A. Vargas, “Comparison of quadratic- and median-based roughness penalties for penalized-likelihood sinogram restoration in computed tomography,” International Journal of Biomedical Imaging, vol. 2006, Article ID 41380, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Li, X. Li, J. Wang et al., “Nonlinear sinogram smoothing for low-dose X-ray CT,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2505–2513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 89–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 10, pp. 1272–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hsieh, “Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise,” Medical Physics, vol. 25, no. 11, pp. 2139–2147, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kachelrieß, O. Watzke, and W. A. Kalender, “Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT,” Medical Physics, vol. 28, no. 4, pp. 475–490, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Lu, X. Li, I. Hsiao, and Z. Liang, “Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the K-L domain,” in Medical Imaging 2002: Physics of Medical Imaging, Proceedings of SPIE, pp. 146–152, San Diego, Calif, USA, February 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. I. Andía, K. D. Sauer, and C. A. Bouman, “Nonlinear backprojection for tomographic reconstruction,” IEEE Transactions on Nuclear Science, vol. 49, no. 1 I, pp. 61–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hel-Or and D. Shaked, “A discriminative approach for wavelet denoising,” IEEE Transactions on Image Processing, vol. 17, no. 4, pp. 443–457, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh, “A recursive filter for noise reduction in statistical iterative tomographic imaging,” in Computational Imaging IV, vol. 6065 of Proceedings of SPIE/IS&T, San Jose, Calif, USA, January 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. N. Ramachandran and A. V. Lakshminarayanan, “Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 9, pp. 2236–2240, 1971. View at Google Scholar · View at Scopus
  15. J. H. Kim, K. I. Kim, and C. E. Kwark, “Filter design for optimization of lesion detection in SPECT,” in Proceedings of the 1996 IEEE Nuclear Science Symposium, vol. 3, pp. 1683–1687, November 1996. View at Scopus
  16. M. Elad, “Why simple shrinkage is still relevant for redundant representations?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559–5569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review, vol. 51, no. 1, pp. 34–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-angle view at iterated shrinkage algorithms,” in Wavelets XII, Proceedings of SPIE, pp. 26–29, San Diego, Calif, USA, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Hel-Or, A. Adler, and M. Elad, “A shrinkage learning approach for single image super-resolution with overcomplete representations,” in Computer Vision—ECCV 2010, vol. 6312, pp. 622–635, Springer, Berlin, Germany, 2010. View at Google Scholar
  21. P. J. Huber, “Robust estimation of a location parameter,” Annals of Statistics, vol. 53, pp. 73–101, 1964. View at Google Scholar
  22. F. J. Anscombe, “The transformation of poisson, binomial and negativebinomial data,” Biometrika, vol. 35, no. 3-4, pp. 246–254, 1948. View at Google Scholar
  23. D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming B, vol. 45, no. 3, pp. 503–528, 1989. View at Google Scholar · View at Scopus
  24. F. Wubbeling and F. Natterer, Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, Pa, USA, 2001.
  25. T. H. Yoon and E. K. Joo, “Butterworth window for power spectral density estimation,” ETRI Journal, vol. 31, no. 3, pp. 292–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. View at Publisher · View at Google Scholar · View at Scopus