Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2013, Article ID 936593, 9 pages
Research Article

Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture

1UNC and NCSU Joint Department of Biomedical Engineering, 304 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC 27599-6136, USA
2Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5

Received 22 March 2013; Accepted 18 June 2013

Academic Editor: Jun Zhao

Copyright © 2013 Ryan C. Gessner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as “acoustic angiography.” Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging.