Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2009, Article ID 143659, 9 pages
http://dx.doi.org/10.1155/2009/143659
Research Article

PLGA Microspheres Incorporated Gelatin Scaffold: Microspheres Modulate Scaffold Properties

Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India

Received 20 October 2008; Accepted 20 January 2009

Academic Editor: Bikramjit Basu

Copyright © 2009 Indranil Banerjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, and S. V. Madihally, “In vitro characterization of chitosan-gelatin scaffolds for tissue engineering,” Biomaterials, vol. 26, no. 36, pp. 7616–7627, 2005. View at Publisher · View at Google Scholar
  2. S. V. Madihally and H. W. T. Matthew, “Porous chitosan scaffolds for tissue engineering,” Biomaterials, vol. 20, no. 12, pp. 1133–1142, 1999. View at Publisher · View at Google Scholar
  3. M.-T. Sheu, J.-C. Huang, G.-C. Yeh, and H.-O. Ho, “Characterization of collagen gel solutions and collagen matrices for cell culture,” Biomaterials, vol. 22, no. 13, pp. 1713–1719, 2001. View at Publisher · View at Google Scholar
  4. H.-W. Kang, Y. Tabata, and Y. Ikada, “Fabrication of porous gelatin scaffolds for tissue engineering,” Biomaterials, vol. 20, no. 14, pp. 1339–1344, 1999. View at Publisher · View at Google Scholar
  5. W. M. Saltzman, Tissue Engineering: Engineering Principles for the Design of Replacement Organs and Tissues, Oxford University Press, New York, NY, USA, 2004.
  6. J. E. Lee, K. E. Kim, I. C. Kwon et al., “Effects of the controlled-released TGF-ß1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold,” Biomaterials, vol. 25, no. 18, pp. 4163–4173, 2004. View at Publisher · View at Google Scholar
  7. J. E. Lee, S. E. Kim, I. C. Kwon et al., “Effects of a chitosan scaffold containing TGF-ß1 encapsulated chitosan microspheres on in vitro chondrocyte culture,” Artificial Organs, vol. 28, no. 9, pp. 829–839, 2004. View at Publisher · View at Google Scholar
  8. K. Kawai, S. Suzuki, Y. Tabata, and Y. Nishimura, “Accelerated wound healing through the incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis using a pressure-induced decubitus ulcer model in genetically diabetic mice,” British Journal of Plastic Surgery, vol. 58, no. 8, pp. 1115–1123, 2005. View at Publisher · View at Google Scholar
  9. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney, “Polymeric system for dual growth factor delivery,” Nature Biotechnology, vol. 19, no. 11, pp. 1029–1034, 2001. View at Publisher · View at Google Scholar
  10. A. J. DeFail, C. R. Chu, N. Izzo, and K. G. Marra, “Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels,” Biomaterials, vol. 27, no. 8, pp. 1579–1585, 2006. View at Publisher · View at Google Scholar
  11. S. M. Royce, M. Askari, and K. G. Marra, “Incorporation of polymer microspheres within fibrin scaffolds for the controlled delivery of FGF-1,” Journal of Biomaterials Science, Polymer Edition, vol. 15, no. 10, pp. 1327–1336, 2004. View at Publisher · View at Google Scholar
  12. A. Goraltchouk, V. Scanga, C. M. Morshead, and M. S. Shoichet, “Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release,” Journal of Controlled Release, vol. 110, no. 2, pp. 400–407, 2006. View at Publisher · View at Google Scholar
  13. S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” International Journal of Pharmaceutics, vol. 282, no. 1-2, pp. 1–18, 2004. View at Publisher · View at Google Scholar
  14. A. J. DeFail, H. D. Edington, S. Matthews, W.-C. Lee, and K. G. Marra, “Controlled release of bioactive doxorubicin from microspheres embedded within gelatin scaffolds,” Journal of Biomedical Materials Research Part A, vol. 79, no. 4, pp. 954–962, 2006. View at Publisher · View at Google Scholar
  15. A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen, “Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres,” Journal of Biomedical Materials Research Part A, vol. 65, no. 4, pp. 489–497, 2003. View at Publisher · View at Google Scholar
  16. J. Liu, D. Meisner, E. Kwong, X. Y. Wu, and M. R. Johnston, “A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres,” Biomaterials, vol. 28, no. 21, pp. 3236–3244, 2007. View at Publisher · View at Google Scholar
  17. M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao, and X. Zhang, “Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions,” Biomaterials, vol. 24, no. 17, pp. 2871–2880, 2003. View at Publisher · View at Google Scholar
  18. D. A. Norris, N. Puri, M. E. Labib, and P. J. Sinko, “Determining the absolute surface hydrophobicity of microparticulates using thin layer wicking,” Journal of Controlled Release, vol. 59, no. 2, pp. 173–185, 1999. View at Publisher · View at Google Scholar
  19. J. L. Drury and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials, vol. 24, no. 24, pp. 4337–4351, 2003. View at Publisher · View at Google Scholar
  20. P. H. T. Vollenberg and D. Heikens, “Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments,” Polymer, vol. 30, no. 9, pp. 1656–1662, 1989. View at Publisher · View at Google Scholar
  21. A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, and N. Roveri, “Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking,” Biomaterials, vol. 22, no. 8, pp. 763–768, 2001. View at Publisher · View at Google Scholar
  22. J. S. Mao, Y. L. Cui, X. H. Wang et al., “A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis,” Biomaterials, vol. 25, no. 18, pp. 3973–3981, 2004. View at Publisher · View at Google Scholar
  23. J. M. Anderson and M. S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres,” Advanced Drug Delivery Reviews, vol. 28, no. 1, pp. 5–24, 1997. View at Publisher · View at Google Scholar
  24. R. Wolfenden, “Waterlogged molecules,” Science, vol. 222, no. 4628, pp. 1087–1093, 1983. View at Publisher · View at Google Scholar
  25. G. Khang and H. B. Lee, “Cell-synthetic surface interaction: physicochemical surface modification,” in Methods of Tissue Engineering, A. Atala and R. P. Lanza, Eds., pp. 771–780, Academic Press, San Diego, Calif, USA, 2002. View at Google Scholar