Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2012 (2012), Article ID 376321, 9 pages
http://dx.doi.org/10.1155/2012/376321
Research Article

Surface Characterization of Asymmetric Bi-Soft Segment Poly(ester urethane urea) Membranes for Blood-Oxygenation Medical Devices

ICEMS and Department of Chemical and Biological Engineering, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa, Portugal

Received 5 July 2011; Accepted 22 August 2011

Academic Editor: Rolf Larsson

Copyright © 2012 Mónica Faria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gogolewski, “Selected topics in biomedical polyurethanes. A review,” Colloid & Polymer Science, vol. 267, no. 9, pp. 757–785, 1989. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Yoon, B. D. Ratner, B. Iván, and J. P. Kennedy, “Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 5. Incorporation of poly(dimethylsiloxane) and polyisobutylene macroglycols,” Macromolecules, vol. 27, no. 6, pp. 1548–1554, 1994. View at Google Scholar · View at Scopus
  3. Y. Deslandes, G. Pleizier, D. Alexander, and P. Santerre, “XPS and SIMS characterisation of segmented polyether polyurethanes containing two different soft segments,” Polymer, vol. 39, no. 11, pp. 2361–2366, 1998. View at Google Scholar · View at Scopus
  4. C. T. Zhao and M. Norberta De Pinho, “Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes,” Polymer, vol. 40, no. 22, pp. 6089–6097, 1999. View at Google Scholar · View at Scopus
  5. D. P. Queiroz and M. N. Pinho, “Gas permeability of polypropylene oxide/polybutadiene bi-soft segment urethane/urea membranes,” Desalination, vol. 145, no. 1–3, pp. 379–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. P. Queiroz, M. N. De Pinho, and C. Dias, “ATR-FTIR studies of poly(propylene oxide)/polybutadiene bi-soft segment urethane/urea membranes,” Macromolecules, vol. 36, no. 11, pp. 4195–4200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Queiroz and M. N. De Pinho, “Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes,” Polymer, vol. 46, no. 7, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Queiroz, A. M. Botelho do Rego, and M. N. de Pinho, “Bi-soft segment polyurethane membranes: surface studies by X-ray photoelectron spectroscopy,” Journal of Membrane Science, vol. 281, no. 1-2, pp. 239–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. P. Queiroz, M. C. Gonçalves, and M. N. De Pinho, “Tailoring of phase-segregation structures in two-soft-segment urethane/urea polymer membranes,” Journal of Applied Polymer Science, vol. 103, no. 1, pp. 315–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. J. Griesser, “Degradation of polyurethanes in biomedical applications-A review,” Polymer Degradation and Stability, vol. 33, no. 3, pp. 329–354, 1991. View at Google Scholar · View at Scopus
  11. D. P. Queiroz, I. M. Pinto, M. C. F. Besteiro et al., “Surface and hemocompatibility studies of bi-soft segment polyurethane membranes,” International Journal of Artificial Organs, vol. 29, no. 9, pp. 866–872, 2006. View at Google Scholar · View at Scopus
  12. A. Takahara, J. I. Tashita, T. Kajiyama, M. Takayanagi, and W. J. MacKnight, “Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment components,” Polymer, vol. 26, no. 7, pp. 987–996, 1985. View at Google Scholar · View at Scopus
  13. T. G. Grasel and S. L. Cooper, “Surface properties and blood compatibility of polyurethaneureas,” Biomaterials, vol. 7, no. 5, pp. 315–328, 1986. View at Google Scholar · View at Scopus
  14. K. Nojima, K. Sanui, N. Ogata, N. Yui, K. Kataoka, and Y. Sakurai, “Material characterization of segmented polyether poly(urethane-urea-amide)s and its implication in blood compatibility,” Polymer, vol. 28, no. 6, pp. 1017–1024, 1987. View at Google Scholar · View at Scopus
  15. T. Kajiyama and A. Takahara, “Surface properties and platelet reactivity of segmented poly(etherurethanes) and poly(etherurethaneureas),” Journal of Biomaterials Applications, vol. 6, no. 1, pp. 42–71, 1991. View at Google Scholar
  16. M. C. Besteiro, A. J. Guiomar, C. A. Gonçalves, V. A. Bairos, M. N. De Pinho, and M. H. Gil, “Characterization and in vitro hemocompatibility of bi-soft segment, polycaprolactone-based poly(ester urethane urea) membranes,” Journal of Biomedical Materials Research A, vol. 93, no. 3, pp. 954–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. “Process of synthesis of asymmetric polyurethane based membranes with hemocompatibility characteristic and membranes by said processes,” PCT/IB2007/003340.
  18. M. Faria, P. Brogueira, and M. N. de Pinho, “Sub-micron tailoring of bi-soft segment asymmetric polyurethane membrane surfaces with enhanced hemocompatibility properties,” Colloids and Surfaces B, vol. 86, no. 1, pp. 21–27, 2011. View at Publisher · View at Google Scholar
  19. W. S. Rasband, “ImageJ,” U.S. National Institutes of Health, Bethesda, Md, USA, 1997–2005, http://rsb.info.nih.gov/ij/.
  20. M. Smoluchowski, Handbook of Electricity and Magnetism, vol. 2, Barth, Leipzig, Germany, 1921.
  21. M. Kosmulski, “The pH-dependent surface charging and points of zero charge. V. Update,” Journal of Colloid and Interface Science, vol. 353, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Werner, U. König, A. Augsburg et al., “Electrokinetic surface characterization of biomedical polymers—A survey,” Colloids and Surfaces A, vol. 159, no. 2-3, pp. 519–529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Vickerman and N. M. Reed, Surface Analysis-Techniques and Applications, John Wiley & Sons, Chichester, UK, 1996.
  24. P. Weidenhammer, C. Werner, and H.-J. Jacobasch, “Electrical double layer forces and adhesion on non-polar polymer surfaces,” Polymer, vol. 37, no. 2, pp. 614–615, 1996. View at Google Scholar
  25. H.-J. Jacobasch, Oberflachenchemie Faserbildender Polymere, Akademie, Berlin, Germany, 1984.
  26. N. Kuehn, H. J. Jacobasch, and K. Lunkenheimer, “Zum Zusammenhang zwischen dem Kontaktwinkel zwischen Wasser und festen Polymeren und ihrem Zeta-Potential gegenüber wäßrigen Lösungen,” Acta Polymerica, vol. 37, p. 394, 1986. View at Google Scholar
  27. International Standards Organization (ISO), ISO 10993-4:2002—Biological Evaluation of Medical Devices. Part 4: Selection of Tests for Interactions with Blood, International Standards Organization, Geneva, Switzerland, 2nd edition, 2002.
  28. American Society for Testing of Materials (ASTM), ASTM F 756-00—Standard Practice for Assessment of Hemolytic Properties of Materials, American Society for Testing of Materials, West Conshohocken, Pa, USA, 2000.
  29. A. Zwart, O. W. Van Assendelft, B. S. Bull, J. M. England, S. M. Lewis, and W. G. Zijlstra, “Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobincyanide standard (4th edition),” Journal of Clinical Pathology, vol. 49, no. 4, pp. 271–274, 1996. View at Google Scholar · View at Scopus
  30. Y. Imai and Y. Nose, “New method for evaluation of antithrombogenicity of materials,” Journal of Biomedical Materials Research, vol. 6, pp. 165–172, 1972. View at Google Scholar
  31. K. Allmer, J. Hilborn, P. H. Larsson, A. Hult, and B. Ranby, “Surface modification of polymers. V. Biomaterial applications,” Journal of Polymer Science A, vol. 28, no. 1, pp. 173–183, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. H. O. Stern, “Über das Gleichgewicht zwischen Materie und Strahlung,” Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 31, p. 448, 1924. View at Google Scholar
  33. R. Hunter, Zeta Potential in Colloid Science, Academic Press, London, UK, 1981.