Table of Contents Author Guidelines Submit a Manuscript
RETRACTED

This manuscript has been retracted as it was submitted for publication without the knowledge and approval of the co-author John Hunt.

International Journal of Biomaterials
Volume 2012 (2012), Article ID 380845, 7 pages
http://dx.doi.org/10.1155/2012/380845
Research Article

Free Radical Production in Immune Cell Systems Induced by Ti, Ti6Al4V and SS Assessed by Chemiluminescence Probe Pholasin Assay

Clinical Engineering, University of Liverpool, Liverpool L69 3GA, UK

Received 12 March 2012; Accepted 13 May 2012

Academic Editor: Mohamed Rahaman

Copyright © 2012 Sandra C. P. Cachinho and Fanrong Pu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Lim and S. L. Cooper, “Chemiluminescent oxidative products generated by in vitro leukocyte- material interactions,” Journal of Materials Science, vol. 7, no. 2, pp. 69–76, 1996. View at Google Scholar · View at Scopus
  2. S. S. Kaplan, R. P. Heine, and R. L. Simmons, “Defensins impair phagocytic killing by neutrophils in biomaterial- related infection,” Infection and Immunity, vol. 67, no. 4, pp. 1640–1645, 1999. View at Google Scholar · View at Scopus
  3. G. Giridhar, A. G. Gristina, and Q. N. Myrvik, “Altered oxidative responses and antibacterial activity of adult rabbit alveolar macrophages exposed to poly(methyl methacrylate),” Biomaterials, vol. 14, no. 8, pp. 609–614, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Anderson, “Mechanisms of inflammation and infection with implanted devices,” Cardiovascular Pathology, vol. 2, pp. 33S–41S, 1993. View at Google Scholar
  5. R. S. Greco, “Body parts: in vivo veritas,” Journal of Biomedical Materials Research, vol. 34, no. 4, pp. 409–410, 1997. View at Google Scholar · View at Scopus
  6. F. S. Chen, D. M. Scher, R. M. Clancy, A. Vera-Yu, and P. E. D. Cesare, “In vitro and in vivo activation of polymorphonuclear leukocytes in response to particulate debris,” Journal of Biomedical Materials Research, vol. 48, pp. 904–912, 1999. View at Google Scholar
  7. F. Renò, F. Lombardi, and M. Cannas, “UHMWPE oxidation increases granulocytes activation: a role in tissue response after prosthesis implant,” Biomaterials, vol. 24, no. 17, pp. 2895–2900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Dokka, D. Toledo, L. Wang et al., “Free radical-mediated transgene inactivation of macrophages by endotoxin,” American Journal of Physiology, vol. 279, no. 5, pp. L878–L883, 2000. View at Google Scholar · View at Scopus
  9. C. Eriksson, J. Lausmaa, and H. Nygren, “Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation,” Biomaterials, vol. 22, no. 14, pp. 1987–1996, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Nimeri, L. Öhman, H. Elwing, J. Wetterö, and T. Bengtsson, “The influence of plasma proteins and platelets on oxygen radical production and F-actin distribution in neutrophils adhering to polymer surfaces,” Biomaterials, vol. 23, no. 8, pp. 1785–1795, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Hyslop, D. B. Hinshaw, I. U. Scraufstatter, C. G. Cochrane, S. Kunz, and K. Vosbeck, “Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense,” Free Radical Biology and Medicine, vol. 19, no. 1, pp. 31–37, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. C. F. Nathan, “Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes,” Journal of Clinical Investigation, vol. 80, no. 6, pp. 1550–1560, 1987. View at Google Scholar · View at Scopus
  13. S. J. Chanock, J. El Benna, R. M. Smith, and B. M. Babior, “The respiratory burst oxidase,” Journal of Biological Chemistry, vol. 269, no. 40, pp. 24519–24522, 1994. View at Google Scholar · View at Scopus
  14. J. K. Jackson, C. M. K. Springate, W. L. Hunter, and H. M. Burt, “Neutrophil activation by plasma opsonized polymeric microspheres: inhibitory effect of Pluronic F127,” Biomaterials, vol. 21, no. 14, pp. 1483–1491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Liu, C. Dahlgren, H. Elwing, and H. Lundqvist, “A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils,” Journal of Immunological Methods, vol. 192, no. 1-2, pp. 173–178, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Ciapetti, D. Granchi, E. Verri et al., “Fluorescent microplate assay for respiratory burst of PMNs challenged in vitro with orthopaedic metals,” Journal of Biomedical Materials Research, vol. 41, pp. 455–460, 1998. View at Google Scholar
  17. D. G. Remick and L. Villarete, “Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates,” Journal of Leukocyte Biology, vol. 59, no. 4, pp. 471–475, 1996. View at Google Scholar · View at Scopus
  18. S. P. Peters, F. Cerasoli, K. H. Albertine, M. H. Gee, D. Berd, and Y. Ishihara, “‘Autoregulation’ of human neutrophil activation in vitro: regulation of phorbol myristate acetate-induced neutrophil activation by cell density,” Journal of Leukocyte Biology, vol. 47, no. 5, pp. 457–474, 1990. View at Google Scholar · View at Scopus
  19. P. Falck, “Characterization of human neutrophils adherent to organic polymers,” Biomaterials, vol. 16, no. 1, pp. 61–66, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Gál, A. Németh, and T. Kriska, “Quantification of the formation of free radicals in macrophage systems,” Reaction Kinetics and Catalysis Letters, vol. 68, no. 1, pp. 105–113, 1999. View at Google Scholar · View at Scopus
  21. H. Hasegawa, K. Suzuki, S. Nakaji, and K. Sugawara, “Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin- and luminol-dependent chemiluminescence,” Journal of Immunological Methods, vol. 210, no. 1, pp. 1–10, 1997. View at Google Scholar · View at Scopus
  22. P. C. Braga, M. T. Sala, M. Dal Sasso, A. Pecile, G. Annoni, and C. Vergani, “Age-associated differences in neutrophil oxidative burst (Chemiluminescence),” Experimental Gerontology, vol. 33, no. 5, pp. 477–484, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. K. E. Iles and H. J. Forman, “Macrophage signaling and respiratory burst,” Immunologic Research, vol. 26, no. 1–3, pp. 95–105, 2002. View at Google Scholar · View at Scopus
  24. A. Samuni, C. M. Krishna, J. Cook, C. D. V. Black, and A. Russo, “On radical production by PMA-stimulated neutrophils as monitored by luminol-amplified chemiluminescence,” Free Radical Biology and Medicine, vol. 10, no. 5, pp. 305–313, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Källtorp, S. Oblogina, S. Jacobsson, A. Karlsson, P. Tengvall, and P. Thomsen, “In vivo cell recruitment, cytokine release and chemiluminescence response at gold, and thiol functionalized surfaces,” Biomaterials, vol. 20, no. 22, pp. 2123–2137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Gretzer and P. Thomsen, “Secretion of IL-1 and H2O2 by human mononuclear cells in vitro,” Biomaterials, vol. 21, no. 10, pp. 1047–1055, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Zimmerli, P. D. Lew, and F. A. Waldvogel, “Pathogenesis of foreign body infection. Evidence for a local granulocyte defect,” Journal of Clinical Investigation, vol. 73, no. 4, pp. 1191–1200, 1984. View at Google Scholar · View at Scopus
  28. S. S. Kaplan, R. E. Basford, M. H. Jeong, and R. L. Simmons, “Mechanisms of biomaterial-induced superoxide release by neutrophils,” Journal of Biomedical Materials Research, vol. 28, no. 3, pp. 377–386, 1994. View at Google Scholar · View at Scopus
  29. H. Nygren, E. Hrustic, C. Karlsson, and L. Öster, “Respiratory burst response of peritoneal leukocytes adhering to titanium and stainless steel,” Journal of Biomedical Materials Research, vol. 57, pp. 238–247, 2001. View at Google Scholar
  30. I. Ginis and A. I. Tauber, “Activation mechanisms of adherent human neutrophils,” Blood, vol. 76, no. 6, pp. 1233–1239, 1990. View at Google Scholar · View at Scopus
  31. S. R. Yan and M. J. Novak, “Diverse effects of neutrophil integrin occupation on respiratory burst activation,” Cellular Immunology, vol. 195, no. 2, pp. 119–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Rae, “The haemolytic action of particulate metals (Cd, Cr, Co, Fe, Mo, Ni, Ta, Ti, Zn, Co-Cr alloy),” Journal of Pathology, vol. 125, no. 2, pp. 81–89, 1978. View at Google Scholar · View at Scopus
  33. A. Remes and D. F. Williams, “Stimulation of a neutrophil respiratory burst by calcium hydrogen phosphate powder,” Clinical Materials, vol. 9, no. 2, pp. 71–76, 1992. View at Google Scholar · View at Scopus
  34. N. C. Lindfors and M. Klockars, “Immunoglobulin enhances the bioactive-glass-induced chemiluminescence response of human polymorphonuclear leukocytes,” Journal of Biomedical Materials Research, vol. 55, pp. 613–617, 2001. View at Google Scholar
  35. R. A. Terkeltaub, D. A. Santoro, G. Mandel, and N. Mandel, “Serum and plasma inhibit neutrophil stimulation by hydroxyapatite crystals,” Arthritis and Rheumatism, vol. 31, no. 9, pp. 1081–1089, 1988. View at Google Scholar · View at Scopus
  36. H. S. R. Hosker, C. Kelly, and P. A. Corris, “Assessment of phagocytic function using chemiluminescence,” Blood Reviews, vol. 3, no. 2, pp. 88–93, 1989. View at Google Scholar · View at Scopus
  37. A. Nakagawara, C. F. Nathan, and Z. A. Cohn, “Hydrogen peroxide metabolism in human monocytes during differentiation in vitro,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1243–1252, 1981. View at Google Scholar · View at Scopus
  38. H. J. Forman and M. Torres, “Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 12, pp. S4–S8, 2002. View at Google Scholar · View at Scopus