Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2012, Article ID 538061, 9 pages
http://dx.doi.org/10.1155/2012/538061
Review Article

Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature

Klinik für Orthopädie und Orthopädische Chirurgie, Universitätskliniken des Saarlandes, Kirrbergerstraße 1D, Saar, 66421 Homburg, Germany

Received 23 March 2012; Accepted 6 June 2012

Academic Editor: Sanjukta Deb

Copyright © 2012 Konstantinos Anagnostakos and Katrin Schröder. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Wachol-Drewek, M. Pfeiffer, and E. Scholl, “Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin,” Biomaterials, vol. 17, no. 17, pp. 1733–1738, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Anagnostakos and J. Kelm, “Enhancement of antibiotic elution from acrylic bone cement,” Journal of Biomedical Materials Research, vol. 90, no. 1, pp. 467–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Anagnostakos, P. Hitzler, D. Pape, D. Kohn, and J. Kelm, “Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem?” Acta Orthopaedica, vol. 79, no. 2, pp. 302–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. de Grood, “Het plomeren van restholten na osteomyelitis met ‘bone-chips’,” Ned Tijdschr Geneeskd, vol. 91.III.32, pp. 2192–2196, 1947. View at Google Scholar
  5. A. C. McLaren and A. Miniaci, “In vivo study to determine the efficacy of cancellous bone graft as a delivery vehicle for antibiotics,” in Proceedings of the 12th Annual Meeting Society for Biomaterials, p. 102, Minneapolis, Minn, USA, 1986.
  6. A. McLaren, “Antibiotic-impregnated bone graft: post-op levels of vancomycin and tobramycin,” in Proceedings of the Orthopaedic Trauma Assoc Annual Meeting, pp. 758–759, 1988.
  7. A. McLaren, “Antibiotic impregnated bone graft,” Journal of Orthopaedic Trauma, vol. 3, p. 171, 1989. View at Google Scholar
  8. C. Allende, M. Mangupli, J. Bagliardelli, P. Diaz, and B. T. Allende, “Infected nonunions of long bones of the upper extremity: staged reconstruction using polymethylmethacrylate and bone graft impregnated with antibiotics,” La Chirurgia degli Organi di Movimento, vol. 93, no. 3, pp. 137–142, 2010. View at Google Scholar
  9. B. Borkhuu, A. Borowski, S. A. Shah, A. G. Littleton, K. W. Dabney, and F. Miller, “Antibiotic-loaded allograft decreases the rate of acute deep wound infection after spinal fusion in cerebral palsy,” Spine, vol. 33, no. 21, pp. 2300–2304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Buttaro, A. M. González Della Valle, L. Piñeiro, E. Mocetti, A. A. Morandi, and F. Piccaluga, “Incorporation of vancomycin-supplemented bone allografts: radiographical, histopathological and immunohistochemical study in pigs,” Acta Orthopaedica Scandinavica, vol. 74, no. 5, pp. 505–513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Buttaro, M. I. Gimenez, G. Greco, L. Barcan, and F. Piccaluga, “High active local levels of vancomycin without nephrotoxicity released from impacted bone allografts in 20 revision hip arthroplasties,” Acta Orthopaedica, vol. 76, no. 3, pp. 336–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Buttaro, R. Pusso, and F. Piccaluga, “Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. Two stage revision results,” Journal of Bone and Joint Surgery, vol. 87, no. 3, pp. 314–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Buttaro, A. Morandi, H. G. Rivello, and F. Piccaluga, “Histology of vancomycin-supplemented impacted bone allografts in revision total hip arthroplasty,” Journal of Bone and Joint Surgery, vol. 87, no. 12, pp. 1684–1687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. S. Chan, S. W. N. Ueng, C. J. Wang, S. S. Lee, E. K. Chao, and C. H. Shin, “Management of small infected tibial defects with antibiotic-impregnated autogenic cancelleus bone grafting,” Journal of Trauma-Injury, Infection and Critical Care, vol. 45, no. 4, pp. 758–764, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. S. Chan, S. W. N. Ueng, C. J. Wang, S. S. Lee, C. Y. Chen, and C. H. Shin, “Antibiotic-impregnated autogenic cancellous bone grafting is an effective and safe method for the management of small infected tibial defects: a comparison study,” Journal of Trauma-Injury, Infection and Critical Care, vol. 48, no. 2, pp. 246–255, 2000. View at Google Scholar · View at Scopus
  16. C. E. Chen, J. Y. Ko, and C. C. Pan, “Results of vancomycin-impregnated cancellous bone grafting for infected tibial nonunion,” Archives of Orthopaedic and Trauma Surgery, vol. 125, no. 6, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. E. Day, S. Megson, and D. Wood, “Iontophoresis as a means of delivering antibiotics into allograft bone,” Journal of Bone and Joint Surgery, vol. 87, no. 11, pp. 1568–1574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. English, A. J. Timperley, D. Dunlop, and G. Gie, “Impaction grafting of the femur in two-stage revision for infected total hip replacement,” Journal of Bone and Joint Surgery, vol. 84, no. 5, pp. 700–705, 2002. View at Google Scholar · View at Scopus
  19. J. C. Gray and M. W. Elves, “Osteogenesis in bone grafts after short-term storage and topical antibiotic treatment. An experimental study in rats,” Journal of Bone and Joint Surgery, vol. 63, no. 3, pp. 441–445, 1981. View at Google Scholar · View at Scopus
  20. K. Kanellakopoulou, T. Sahinides, T. Tsaganos, N. Galanakis, H. Giamarellou, and E. J. Giamarellos-Bourboulis, “In vitro release of fusidic acid and teicoplanin from cancellous bone allografts,” Journal of Chemotherapy, vol. 20, no. 5, pp. 645–647, 2008. View at Google Scholar · View at Scopus
  21. K. Kanellakopoulou, T. Sahinides, T. Tsaganos, N. Galanakis, H. Giamarellou, and E. J. Giamarellos-Bourboulis, “In vitro elution of moxifloxacin from cancellous bone allografts,” Journal of Biomedical Materials Research, vol. 92, no. 1, pp. 52–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Ketonis, C. S. Adams, S. Barr et al., “Antibiotic modification of native grafts: improving upon nature's scaffolds,” Tissue Engineering, vol. 16, no. 6, pp. 2041–2049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Ketonis, S. Barr, C. S. Adams, N. J. Hickok, and J. Parvizi, “Bacterial colonization of bone allografts: establishment and effects of antibiotics,” Clinical Orthopaedics and Related Research, vol. 468, no. 8, pp. 2113–2121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. P. C. Khoo, K. A. Michalak, P. J. Yates, S. M. Megson, R. E. Day, and D. J. Wood, “Iontophoresis of antibiotics into segmental allografts,” Journal of Bone and Joint Surgery, vol. 88, no. 9, pp. 1149–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. W. Lindsey, R. Probe, T. Miclau, J. W. Alexander, and S. M. Perren, “The effects of antibiotic-impregnated autogeneic cancellous bone graft on bone healing,” Clinical Orthopaedics and Related Research, vol. 291, pp. 303–312, 1993. View at Google Scholar · View at Scopus
  26. N. M. C. Mathijssen, P. L. C. Petit, P. Pilot, B. W. Schreurs, P. Buma, and R. M. Bloem, “Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study,” BMC Musculoskeletal Disorders, vol. 11, article 96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. A. Michalak, P. P. C. Khoo, P. J. Yates, R. E. Day, and D. J. Wood, “Iontophoresed segmental allografts in revision arthroplasty for infection,” Journal of Bone and Joint Surgery, vol. 88, no. 11, pp. 1430–1437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Miclau, L. E. Dahners, and R. W. Lindsey, “In vitro pharmacokinetics of antibiotic release from locally implantable materials,” Journal of Orthopaedic Research, vol. 11, no. 5, pp. 627–632, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. W. H. Petri III, “Osteogenic activity of antibiotic-supplemented bone allografts in the guinea pig,” Journal of Oral and Maxillofacial Surgery, vol. 42, no. 10, pp. 631–636, 1984. View at Google Scholar · View at Scopus
  30. W. H. Petri III and S. J. Schaberg, “The effects of antibiotic-supplemented bone allografts on contaminated, partially avulsive fractures of the canine ulna,” Journal of Oral and Maxillofacial Surgery, vol. 42, no. 11, pp. 699–704, 1984. View at Google Scholar · View at Scopus
  31. W. H. Petri III, “Evaluation of antibiotic-supplemented bone allograft in a rabbit model,” Journal of Oral and Maxillofacial Surgery, vol. 49, no. 4, pp. 392–396, 1991. View at Google Scholar · View at Scopus
  32. K. H. Rhyu, M. H. Jung, J. J. Yoo, M. C. Lee, S. C. Seong, and H. J. Kim, “In vitro release of vancomycin from vancomycin-loaded blood coated demineralised bone,” International Orthopaedics, vol. 27, no. 1, pp. 53–55, 2003. View at Google Scholar · View at Scopus
  33. S. Seber, I. Günal, and E. Göktürk, “Antibiotic-impregnated xenografts in the treatment of chronic osteomyelitic cavities. Seven cases followed for 3 to 5 years,” International Orthopaedics, vol. 22, no. 3, pp. 197–199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Winkler, O. Janata, C. Berger, W. Wein, and A. Georgopoulos, “In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 3, pp. 423–428, 2000. View at Google Scholar · View at Scopus
  35. H. Winkler, K. Kaudela, A. Stoiber, and F. Menschik, “Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery—one stage revision results,” Cell and Tissue Banking, vol. 7, no. 4, pp. 319–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Winkler, A. Stoiber, K. Kaudela, F. Winter, and F. Menschik, “One stage uncemented revision of infected total hip replacement using cancellous allograft bone impregnated with antibiotics,” Journal of Bone and Joint Surgery, vol. 90, no. 12, pp. 1580–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Witsø, L. Persen, K. Loseth, and K. Bergh, “Adsoprtion and release of antibiotics from morselized cancellous bone. In vitro studies of 8 antibiotics,” Acta Orthopaedica Scandinavica, vol. 70, pp. 298–304, 1999. View at Publisher · View at Google Scholar
  38. E. Witsø, L. Persen, K. Løseth, P. Benum, and K. Bergh, “Cancellous bone as an antibiotic carrier,” Acta Orthopaedica Scandinavica, vol. 71, no. 1, pp. 80–84, 2000. View at Google Scholar · View at Scopus
  39. E. Witsø, L. Persen, P. Benum, and K. Bergh, “Release of netilmicin and vancomycin from cancellous bone,” Acta Orthopaedica Scandinavica, vol. 73, no. 2, pp. 199–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Witsø, L. Persen, P. Benum, A. Aamodt, O. S. Husby, and K. Bergh, “High local concentrations without systemic adverse effects after impaction of netilmicin-impregnated bone,” Acta Orthopaedica Scandinavica, vol. 75, no. 3, pp. 339–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Witsø, L. Persen, P. Benum, and K. Bergh, “Cortical allograft as a vehicle for antibiotic delivery,” Acta Orthopaedica, vol. 76, no. 4, pp. 481–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Miclau, M. L. Edin, G. E. Lester, R. W. Lindsey, and L. E. Dahners, “Bone toxicity of locally applied aminoglycosides,” Journal of Orthopaedic Trauma, vol. 9, no. 5, pp. 401–406, 1995. View at Google Scholar · View at Scopus
  43. M. L. Edin, T. Miclau, G. E. Lester, R. W. Lindsey, and L. E. Dahners, “Effect of cefazolin and vancomycin on osteoblasts in vitro,” Clinical Orthopaedics and Related Research, vol. 333, pp. 245–251, 1996. View at Google Scholar · View at Scopus
  44. C. Gudmundson, “Oxytetracycline-induced fragility of growing bones. An experimental study in rats,” Clinical Orthopaedics and Related Research, vol. 77, pp. 284–289, 1971. View at Google Scholar · View at Scopus
  45. J. Jung, N. V. Schmid, J. Kelm, E. Schmitt, and K. Anagnostakos, “Complications after spacer implantation in the treatment of hip joint infections,” International Journal of Medical Sciences, vol. 6, no. 5, pp. 265–273, 2009. View at Google Scholar · View at Scopus