Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2012, Article ID 673163, 7 pages
http://dx.doi.org/10.1155/2012/673163
Research Article

Comparison of Modified Chandler, Roller Pump, and Ball Valve Circulation Models for In Vitro Testing in High Blood Flow Conditions: Application in Thrombogenicity Testing of Different Materials for Vascular Applications

1Haemoscan and Department of Cardiothoracic Surgery, UMCG, Haemoscan, Stavangerweg 23-23, 9723 JC, Groningen, The Netherlands
2University Medical Center Groningen (UMCG), P.O. Box 9700 RB Groningen, The Netherlands
3Hemolab, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Received 14 October 2011; Accepted 22 February 2012

Academic Editor: Narayana Garimella

Copyright © 2012 Wim van Oeveren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. TC 194/WG9. ISO 10993-4:2002 Biological evaluation of medical devices—Part 4: selection of tests for interactions with blood.
  2. K. Kawakami, Y. Harada, M. Sakasita, H. Nagai, M. Handa, and Y. Ikeda, “A new method for continuous measurement of platelet adhesion under flow conditions,” Asaio Journal, vol. 39, no. 3, pp. M558–M560, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Balasubramanian, E. Grabowski, A. Bini, and Y. Nemerson, “Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions,” Blood, vol. 100, no. 8, pp. 2787–2792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. V. I. Sevastianov and V. M. Parfeev, “Fatigue and hemocompatibility of polymer materials,” Artificial Organs, vol. 11, no. 1, pp. 20–25, 1987. View at Google Scholar · View at Scopus
  5. M. Dadsetan, H. Mirzadeh, N. Sharifi-Sanjani, and P. Salehian, “In vitro studies of platelet adhesion on laser-treated polyethylene terephthalate surface,” Journal of Biomedical Materials Research, vol. 54, no. 4, pp. 540–546, 2001. View at Google Scholar
  6. S. F. Mohammad and D. B. Olsen, “Immobilized albumin-immunoglobulin g for improved hemocompatibility of biopolymers,” Asaio Transactions, vol. 35, no. 3, pp. 384–387, 1989. View at Google Scholar · View at Scopus
  7. C. Beythien, W. Terres, and C. W. Hamm, “In vitro model to test the thrombogenicity of coronary stents,” Thrombosis Research, vol. 75, no. 6, pp. 581–590, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. A. B. Chandler, “In vitro thrombotic coagulation of blood: a method for producing a thrombus,” Laboratory Investigation, vol. 7, pp. 110–116, 1958. View at Google Scholar
  9. T. Thorsen, H. Klausen, R. T. Lie, and H. Holmsen, “Bubble-induced aggregation of platelets: effects of gas species, proteins, and decompression,” Undersea & Hyperbaric Medicine, vol. 20, no. 2, pp. 101–119, 1993. View at Google Scholar · View at Scopus
  10. S. Ritz-Timme, N. Eckelt, E. Schmidtke, and H. Thomsen, “Genesis and diagnostic value of leukocyte and platelet accumulations around “air bubbles” in blood after venous air embolism,” International Journal of Legal Medicine, vol. 111, no. 1, pp. 22–26, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Miller, V. B. Fainerman, R. Wüstneck, J. Krägel, and D. V. Trukhin, “Characterisation of the initial period of protein adsorption by dynamic surface tension measurements using different drop techniques,” Colloids and Surfaces A, vol. 131, no. 1–3, pp. 225–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Wang, J. Ji, C. Y. Gao, G. H. Yu, and L. X. Feng, “Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications,” Biomaterials, vol. 22, no. 12, pp. 1549–1562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. J. Monnink, A. J. Van Boven, H. O. J. Peels et al., “Silicon-carbide coated coronary stents have low platelet and leukocyte adhesion during platelet activation,” Journal of Investigative Medicine, vol. 47, no. 6, pp. 304–310, 1999. View at Google Scholar · View at Scopus
  14. G. Amoroso, A. J. Van Boven, C. Volkers, H. J. G. M. Crijns, and W. Van Oeveren, “Multilink stent promotes less platelet and leukocyte adhesion than a traditional stainless steel stent: an in vitro experimental study,” Journal of Investigative Medicine, vol. 49, no. 3, pp. 265–272, 2001. View at Google Scholar · View at Scopus
  15. K. Münch, M. F. Wolf, P. Gruffaz et al., “Use of simple and complex in vitro models for multiparameter characterization of human blood-material/device interactions,” Journal of Biomaterials Science, Polymer Edition, vol. 11, no. 11, pp. 1147–1163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Harboe, “A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 11, no. 1, pp. 66–70, 1959. View at Google Scholar · View at Scopus
  17. P. Bellavite, G. Andrioli, P. Guzzo et al., “A colorimetric method for the measurement of platelet adhesion in microtiter plates,” Analytical Biochemistry, vol. 216, no. 2, pp. 444–450, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mulvihill, T. Crost, J. L. Renaux, and J. P. Cazenave, “Evaluation of haemodialysis membrane biocompatibility by parallel assessment in an ex vivo model in healthy volunteers,” Nephrology Dialysis Transplantation, vol. 12, no. 9, pp. 1968–1973, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Christensen, R. Larsson, H. Emanuelsson, G. Elgue, and A. Larsson, “Effects on blood compatibility in vitro by combining a direct P2Y12 receptor inhibitor and heparin coating of stents,” Platelets, vol. 17, no. 5, pp. 318–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sinn, T. Scheuermann, S. Deichelbohrer, G. Ziemer, and H. P. Wendel, “A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to iso 10993-4,” Journal of Materials Science, vol. 22, pp. 1521–1528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. W. C. Culp, T. R. Porter, T. C. McCowan et al., “Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs,” Journal of Vascular and Interventional Radiology, vol. 14, no. 3, pp. 343–347, 2003. View at Google Scholar · View at Scopus
  22. C. Gómez-Suárez, H. J. Busscher, and H. C. Van Der Mei, “Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2531–2537, 2001. View at Publisher · View at Google Scholar
  23. M. H. Jeong, W. G. Owen, M. E. Staab et al., “Porcine model of stent thrombosis: platelets are the primary component of acute stent closure,” Catheterization and Cardiovascular Diagnosis, vol. 38, no. 1, pp. 38–43, 1996. View at Google Scholar
  24. R. Komatsu, M. Ueda, T. Naruko, A. Kojima, and A. E. Becker, “Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses,” Circulation, vol. 98, no. 3, pp. 224–233, 1998. View at Google Scholar · View at Scopus
  25. H. M. M. Van Beusekom, D. M. Whelan, S. H. Hofma et al., “Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries,” Journal of the American College of Cardiology, vol. 32, no. 4, pp. 1109–1117, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. K. Shah, “Plaque disruption and coronary thrombosis: new insight into pathogenesis and prevention,” Clinical Cardiology, vol. 20, no. 12, pp. II38–II44, 1997. View at Google Scholar · View at Scopus