Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2013 (2013), Article ID 396056, 9 pages
Research Article

The Use of Porous Scaffold as a Tumor Model

1Department of Radiation Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
2Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
3The Institute of Biomedical Engineering and Technology, The University of Sydney, Sydney, NSW 2006, Australia
4Department of Infectious Diseases and Immunology, Central Clinical School, The University of Sydney, Sydney, NSW 2006, Australia
5Discipline of Pathology, School of Medicine, University of Western Sydney, Richmond, NSW 2751, Australia
6Cancer Pathology, Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia

Received 8 April 2013; Revised 12 August 2013; Accepted 12 August 2013

Academic Editor: Bikramjit Basu

Copyright © 2013 Mei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Human cancer is a three-dimensional (3D) structure consisting of neighboring cells, extracellular matrix, and blood vessels. It is therefore critical to mimic the cancer cells and their surrounding environment during in vitro study. Our aim was to establish a 3D cancer model using a synthetic composite scaffold. Methods. High-density low-volume seeding was used to promote attachment of a non-small-cell lung cancer cell line (NCI-H460) to scaffolds. Growth patterns in 3D culture were compared with those of monolayers. Immunohistochemistry was conducted to compare the expression of Ki67, CD44, and carbonic anhydrase IX. Results. NCI-H460 readily attached to the scaffold without surface pretreatment at a rate of 35% from a load of 1.5 × 106 cells. Most cells grew vertically to form clumps along the surface of the scaffold, and cell morphology resembled tissue origin; 2D cultures exhibited characteristics of adherent epithelial cancer cell lines. Expression patterns of Ki67, CD44, and CA IX varied markedly between 3D and monolayer cultures. Conclusions. The behavior of cancer cells in our 3D model is similar to tumor growth in vivo. This model will provide the basis for future study using 3D cancer culture.