Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2011, Article ID 482485, 9 pages
http://dx.doi.org/10.1155/2011/482485
Research Article

In Vitro Corrosion Behavior of Lingual Orthodontic Archwires

1Department of Orthodontics, Université de Genève, Switzerland
2Departament d'Odontoestomatologia, Facultat d'Odontologia, Universitat de Barcelona, c/Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat, Spain
3Departament de Ciència dels Materials i Enginyeria Metallúrgica, Escola Tècnica Superior d'Enginyeria Industrial, Universitat Politècnica de Catalunya, Avenida Diagonal, 647, 08028 Barcelona, Spain

Received 11 September 2010; Revised 24 January 2011; Accepted 16 March 2011

Academic Editor: W. Ke

Copyright © 2011 Carlos Suárez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Kurz, M. L. Swartz, and C. Andreiko, “Lingual orthodontics: a status report. Part 2: research and development,” Journal of Clinical Orthodontics, vol. 16, no. 11, pp. 735–740, 1982. View at Google Scholar · View at Scopus
  2. K. Fujita, “New orthodontic treatment with lingual bracket mushroom arch wire appliance,” American Journal of Orthodontics, vol. 76, no. 6, pp. 657–675, 1979. View at Google Scholar · View at Scopus
  3. K. Fujita, “Multilingual-bracket and mushroom arch wire technique. A clinical report,” American Journal of Orthodontics, vol. 82, no. 2, pp. 120–140, 1982. View at Google Scholar · View at Scopus
  4. W. Liang, Q. Rong, J. Lin, and B. Xu, “Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 135, no. 3, pp. 316–322, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Geron, R. Romano, and T. Brosh, “Vertical forces in labial and lingual orthodontics applied on maxillary incisors—a theoretical approach,” Angle Orthodontist, vol. 74, no. 2, pp. 195–201, 2004. View at Google Scholar · View at Scopus
  6. H. C. McCann, “Inorganic components of salivary secretions,” in Art and Science of Dental Caries Research, R. S. Harris, Ed., pp. 55–70, Academic Press, New York, NY, USA, 1968. View at Google Scholar
  7. M. P. Walker, R. J. White, and K. S. Kula, “Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 127, no. 6, pp. 662–669, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. K. Kaneko, K. Yokoyama, K. Moriyama, K. Asaoka, and J. Sakai, “Degradation in performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0% acidulated phosphate fluoride solution,” Angle Orthodontist, vol. 74, no. 4, pp. 487–495, 2004. View at Google Scholar · View at Scopus
  9. K. Yokoyama, K. Kaneko, T. Ogawa, K. Moriyama, K. Asaoka, and J. Sakai, “Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions,” Biomaterials, vol. 26, no. 1, pp. 101–108, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. N. Schiff, B. Grosgogeat, M. Lissac, and F. Dalard, “Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires,” Biomaterials, vol. 25, no. 19, pp. 4535–4542, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. Ogawa, K. Yokoyama, K. Asaoka, and J. Sakai, “Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions,” Biomaterials, vol. 25, no. 12, pp. 2419–2425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Kaneko, K. Yokoyama, K. Moriyama, K. Asaoka, J. Sakai, and M. Nagumo, “Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions,” Biomaterials, vol. 24, no. 12, pp. 2113–2120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. House, F. Sernetz, D. Dymock, J. R. Sandy, and A. J. Ireland, “Corrosion of orthodontic appliances-should we care?” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 133, no. 4, pp. 584–592, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. C. McKay, R. Macnair, C. MacDonald, and M. H. Grant, “Interactions of orthopaedic metals with an immortalized rat osteoblast cell line,” Biomaterials, vol. 17, no. 13, pp. 1339–1344, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kerosuo, A. Kullaa, E. Kerosuo, L. Kanerva, and A. Hensten-Pettersen, “Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 109, no. 2, pp. 148–154, 1996. View at Google Scholar · View at Scopus
  16. M. Berger-Gorbet, B. Broxup, C. Rivard, and L. H. Yahia, “Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants,” Journal of Biomedical Materials Research, vol. 32, no. 2, pp. 243–248, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Bass, H. Fine, and G. J. Cisneros, “Nickel hypersensitivity in the orthodontic patient,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 103, no. 3, pp. 280–285, 1993. View at Google Scholar · View at Scopus
  18. M. R. Grimsdottir, A. Hensten-Pettersen, and A. Kullmann, “Proliferation of nickel-sensitive human lymphocytes by corrosion products of orthodontic appliances,” Biomaterials, vol. 15, no. 14, pp. 1157–1160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. International Agency for Research on Cancer, Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, IARC, Lyon, France, 1996.
  20. D. Zhou, K. Salnikow, and M. Costa, “Cap43, a novel gene specifically induced by Ni compounds,” Cancer Research, vol. 58, no. 10, pp. 2182–2189, 1998. View at Google Scholar · View at Scopus
  21. K. Salnikow, M. Gao, V. Voitkun, X. Huang, and M. Costa, “Altered oxidative stress responses in nickel-resistant mammalian cells,” Cancer Research, vol. 54, no. 24, pp. 6407–6412, 1994. View at Google Scholar · View at Scopus
  22. M. R. Grimsdottir, A. Hensten-Pettersen, and A. Kullmann, “Cytotoxic effect of orthodontic appliances,” European Journal of Orthodontics, vol. 14, no. 1, pp. 47–53, 1992. View at Google Scholar · View at Scopus
  23. J. Ryhänen, E. Niemi, W. Serlo et al., “Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures,” Journal of Biomedical Materials Research, vol. 35, no. 4, pp. 451–457, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Daems, J. P. Celis, and G. Willems, “Morphological characterization of as-received and in vivo orthodontic stainless steel archwires,” European Journal of Orthodontics, vol. 31, no. 3, pp. 260–265, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. C. Bourauel, T. Fries, D. Drescher, and R. Plietsch, “Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry,” European Journal of Orthodontics, vol. 20, no. 1, pp. 79–92, 1998. View at Google Scholar · View at Scopus
  26. M. Iijima, H. Ohno, I. Kawashima, K. Endo, and I. Mizoguchi, “Mechanical behavior at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures,” Dental Materials, vol. 18, no. 1, pp. 88–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Biermann, D. W. Berzins, and T. G. Bradley, “Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires,” Angle Orthodontist, vol. 77, no. 3, pp. 499–503, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. ASTM, Standard terminology relating to corrosion and corrosion testing. Annual book of ASTM standards. Metals test methods and analytical procedures, vol. 03. 02, ASTM, Philadelphia, Pa, USA, 2001.
  29. C. Suárez, T. Vilar, J. Gil, and P. Sevilla, “In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 2, pp. 675–683, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. N. Alonso and S. Wolynec, “Influência das variáveis de ensaio e da composição química sobre o potencial de pite do aço AISI 304L,” in Anais do 17º Congresso Brasileiro de Corrosão, vol. 2, pp. 980–988, Rio de Janeiro, Brazil, Outubro 1993.
  31. M. A. Barbosa, A. Garrido, A. Campilho, and I. Sutherland, “The surface composition and corrosion behaviour of AISI 304 stainless steel after immersion in 20% HNO solution,” Corrosion Science, vol. 32, no. 2, pp. 179–184, 1991. View at Google Scholar · View at Scopus
  32. T. Sydberger, “Influence of the surface state on the initiation of crevice corrosion on stainless steel,” Werkstoffe und Korrosion, vol. 32, no. 3, pp. 119–128, 1981. View at Google Scholar · View at Scopus
  33. P. Berge, “Corros,” Anti-Corros, vol. 15, no. 1, p. 3, 1967. View at Google Scholar
  34. J. L. Crolet, L. Seraphin, and R. Tricot, “Nature of the pitting potential of stainless steels. Role of inclusions and surface condition,” Mem Sci Rev Metall, vol. 74, no. 11, pp. 647–661, 1977. View at Google Scholar
  35. P. E. Manning, D. J. Duquette, and W. F. Savage, “The effect of test method and surface condition on pitting potential of single duplex phase 304 stainless steel,” Corrosion, vol. 35, no. 4, pp. 151–157, 1979. View at Google Scholar · View at Scopus
  36. K. T. Oh, Y. S. Kim, Y. S. Park, and K. N. Kim, “Properties of super stainless steels for orthodontic applications,” Journal of Biomedical Materials Research, Part B, vol. 69, no. 2, pp. 183–194, 2004. View at Google Scholar · View at Scopus
  37. K. M. Speck and A. C. Fraker, “Anodic polarization behavior of Ti-Ni and Ti-6A1-4V in simulated physiological solutions,” Journal of Dental Research, vol. 59, no. 10, pp. 1590–1595, 1980. View at Google Scholar · View at Scopus
  38. A. J. Sedriks, J. A. S. Green, and D. L. Novak, “Electrochemical behavior of Ti- Ni alloys in acidic chloride solutions,” Corrosion, vol. 28, no. 4, pp. 137–142, 1972. View at Google Scholar · View at Scopus
  39. G. Rondelli, B. Vicentini, and A. Cigada, “The corrosion behaviour of nickel titanium shape memory alloys,” Corrosion Science, vol. 30, no. 8-9, pp. 805–812, 1990. View at Google Scholar · View at Scopus
  40. H. Fischer-Brandies, M. Es-Souni, N. Kock, K. Raetzke, and O. Bock, “Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016 × 0.022,” Journal of Orofacial Orthopedics, vol. 64, no. 2, pp. 88–99, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. W. A. Brantley, M. Iijima, and T. H. Grentzer, “Temperature-modulated DSC provides new insight about nickel-titanium wire transformations,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 124, no. 4, pp. 387–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. B. P. McCoy, Comparison of compositions and differential scanning calorimetric analyses of the copper-nickel-titanium wires with existing nickel-titanium orthodontic wires, M.S. thesis, The Ohio State University, Columbus, Ohio, USA, 1996.
  43. O. Mercier, K. N. Melton, R. Gotthardt, and A. Kulik, “Lattice instability in the NiTi and NiTiCu alloys,” in Proceedings of an International Conference on Solid-Solid Phase Transformations, H. L. Aaronson, D. E. Laughlin, R. F. Sekerka, and C. M. Wayman, Eds., pp. 1259–1263, American Institute of Mining, Metallurgical and Petroleum Engineers, 1981.
  44. W. J. Moberly and K. N. Melton, “Ni-Ti-Cu shape memory alloys,” in Engineering Aspects of Shape Memory Alloys, T. W. Duerig, K. N. Melton, D. Stökel, and C. M. Wayman, Eds., pp. 46–57, Butterworth-Heinemann, London, UK, 1990. View at Google Scholar
  45. F. J. Gil, J. A. Planell, and C. Libenson, “Differences in the pseudoelasticity behaviour of nickel-titanium orthodontic wires,” Journal of Materials Science: Materials in Medicine, vol. 4, no. 3, pp. 281–284, 1993. View at Google Scholar · View at Scopus
  46. T. G. Bradley, W. A. Brantley, and B. M. Culbertson, “Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 109, no. 6, pp. 589–597, 1996. View at Google Scholar · View at Scopus
  47. T. Todoroki and H. Tamura, “Effect of heat treatment after cold working on the phase transformation in TiNi alloy,” Transactions of the Japan Institute of Metals, vol. 28, no. 2, pp. 83–94, 1987. View at Google Scholar · View at Scopus
  48. L, Leu, R, Fournelle, W, Brantley, and T. Ehlert, “Evidence of R structure in superelastic NiTi orthodontic wires,” Journal of Dental Research, vol. 69, IADR Abstracts 313, 1990. View at Google Scholar
  49. D. Goldstein, L. Kabacoff, and J. Tydings, “Stress effects on nitinol phase transformations,” Journal of Metals, vol. 39, no. 3, pp. 19–26, 1987. View at Google Scholar · View at Scopus
  50. K. Otsuka, “Introduction to the R-phase transition,” in Engineering Aspects of Shape Memory Alloys, T. W. Duerig, K. N. Melton, D. Stökel, and C. M. Wayman, Eds., pp. 36–45, Butterworth-Heinemann, London, UK, 1990. View at Google Scholar
  51. N. P. Hunt, S. J. Cunningham, G. G. Golden, and M. Sheriff, “An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires,” Angle Orthodontist, vol. 69, no. 5, pp. 433–440, 1999. View at Google Scholar · View at Scopus
  52. J. W. Edie, G. F. Andreasen, and M. P. Zaytoun, “Surface corrosion of nitinol and stainless steel under clinical conditions,” Angle Orthodontist, vol. 51, no. 4, pp. 319–324, 1981. View at Google Scholar · View at Scopus