Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 185842, 7 pages
Research Article

Effect of Minor Alloying Elements on the Corrosion Behavior of Fe40Al in NaCl-KCl Molten Salts

1CIICAP, Universidad Autónoma del Estado de Morelos, Avendia Universidad 1001, Colonia Chamilpa, 62209 Cuernavaca, MOR, Mexico
2IIE, Gerencia de Procesos Térmicos, Avenida Reforma 120, 62490 Temixco, MOR, Mexico
3Facultad de Ingeniera Mecanica, Universidad Michoacana de San Nicolás de Hidalgo, 58000 Morelia, MICH, Mexico

Received 2 February 2012; Accepted 18 May 2012

Academic Editor: Vesna Mišković-Stanković

Copyright © 2012 G. Salinas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The hot corrosion behavior of Fe40Al intermetallic alloyed with Ag, Cu, Li, and Ni (1–5 at.%) in NaCl-KCl (1 : 1 M) at 670°C, typical of waste gasification environments, has been evaluated by using polarization curves and weight loss techniques and compared with a 304-type stainless steel. Both gravimetric and electrochemical techniques showed that all different Fe40Al-base alloys have a much higher corrosion resistance than that for stainless steel. Among the different Fe40Al-based alloys, the corrosion rate was very similar among each other, but it was evident that the addition of Li decreased their corrosion rate whereas all the other elements increased it. Results have been explained in terms of the formation and stability of an external, protective Al2O3 layer.