Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 452631, 10 pages
http://dx.doi.org/10.1155/2012/452631
Research Article

Corrosion Behaviour of AZ and ZA Magnesium Alloys in Alkaline Chloride Media

1Department of Mechanical Engineering, Dumlupinar University, 43100 Kütahya, Turkey
2Department of Mining, Metallurgical and Materials Engineering, Laval University, Quebec City, QC, Canada G1V 0A6

Received 16 August 2012; Revised 2 November 2012; Accepted 5 November 2012

Academic Editor: Chang-Jian Lin

Copyright © 2012 Mustafa Ö. Öteyaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Landkof, “Magnesium applications in the electronic industries,” in Proceedings of the 2nd Israeli International Conference on Magnesium Science & Technology, E. Aghion and D. Eliezer, Eds., pp. 50–56, Magnesium Research Institute, Sdom, Israel, February 2000.
  2. D. Magers and J. Willekens, “Global outlook on the use of magnesium die-castings in automotive applications,” in Proceedings of the Magnesium Alloys and their Application, B. L. Mordike and K. U. Kainer, Eds., pp. 105–112, Werkstoff-Informationsgesellschaft Gmbh, Frankfurt, Germany, 1998.
  3. K. Nisancioglu, O. Lunder, and T. K. Aune, “Corrosion mechanism of AZ91 magnesium alloy,” in Proceedings of the International Magnesium Association, pp. 43–50, Detroit, Minn, USA, 1990.
  4. Z. Szklarska-Smialowska, Pitting Corrosion of Metals, NACE International, Houston, Tex, USA, 1986.
  5. B. E. Wilde and E. Williams, “On the correspondence between electrochemical and chemical accelerated pitting corrosion tests,” Journal of Electrochemical Society, vol. 117, no. 6, pp. 775–779, 1970. View at Google Scholar
  6. S. Lebeau, Y. Yamamoto, and K. Sakamoto, “Thixomolding of magnesium automotive components,” SAE Technical Paper 980087, International Congress and Exposition, Detroit MI, USA, 1998. View at Google Scholar
  7. I. Nakatsugawa, F. Yamada, H. Takayasu, T. Tsukeda, and K. Saito, “Corrosion behavior of thixomolded Mg-Al alloys,” in Proceedings of the International Symposium on Environmental Degradation of Materials and Corrosion Control in Metals, pp. 113–123, Québec, Canada, August 1999.
  8. R. Decker, R. Carnahan, R. Vining, D. Walukas, S. Lebeau, and N. Prewitt, “Thixomolding magnesium based alloys,” in Proceedings of the Magnesium Alloys and Their Applications, B. L. Mordike and K. U. Kainer, Eds., pp. 545–550, Werkstoff-Informationsgesellschaft Gmbh, Frankfurt, Germany, April1998.
  9. T. Yamaguchi, T. Sukeda, and K. Saito, “Thixomolding—its features and assignments,” Kikai-Gijutsu, Nikkan Kogyo Shinbun, vol. 47, no. 3, pp. 59–64, 1999. View at Google Scholar
  10. G. L. Makar and J. Kruger, “Corrosion studies of rapidly solidified magnesium alloys,” Journal of the Electrochemical Society, vol. 137, no. 2, pp. 414–421, 1990. View at Google Scholar · View at Scopus
  11. J. H. Nordlien, K. Nisancioglu, S. Ono, and N. Masuko, “Morphology and structure of water-formed oxides on ternary MgAl alloys,” Journal of the Electrochemical Society, vol. 144, no. 2, pp. 461–466, 1997. View at Google Scholar · View at Scopus
  12. G. Baril and N. Pébère, “Corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions,” Corrosion Science, vol. 43, no. 3, pp. 471–484, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Alves, U. Koster, E. Aghion, and D. Eliezer, “Environmental behavior of magnesium and magnesium alloys,” Materials Technology, vol. 16, no. 2, pp. 110–126, 2001. View at Google Scholar · View at Scopus
  14. R. Ambat, N. N. Aung, and W. Zhou, “Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy,” Corrosion Science, vol. 42, no. 8, pp. 1433–1455, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Song, A. Atrens, and M. Dargusch, “Influence of microstructure on the corrosion of diecast AZ91D,” Corrosion Science, vol. 41, no. 2, pp. 249–273, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Suman, “Effects of direct aging on mechanical properties and corrosion resistance of diecast magnesium alloys AZ91D and AM60B,” SAE Transactions, vol. 99, no. 5, pp. 849–859, 1990. View at Google Scholar · View at Scopus
  17. O. Lunder, M. Videm, and K. Nisancioglu, “Corrosion resistant magnesium alloys,” SAE Technical Paper 950428, International Congress and Exposition, Detroit, MI, USA, 1995. View at Google Scholar
  18. G. Neite, K. Kubota, K. Higashi, and F. Hehmann, “Magnesium-based alloys,” Materials Science and Technology A, vol. 8, pp. 113–213, 1996. View at Google Scholar
  19. I. A. Anyanwu, T. Honda, S. Kamado, Y. Kojima, S. Takeda, and T. Ishida, “Heat and corrosion resistance of Mg-Zn-Al-Ca alloys,” in Proceedings of the Magnesium Alloys and Their Applications, K. U. Kainer, Ed., pp. 110–115, Wiley-VCH, Weinheim, Germany, 2006.
  20. E. Øvrelid, G. B. Floøistad, T. Rosenqvist, P. Bakke, and T. A. Engh, “The effect of Sr addition on the hydrogen solubility and hydride formation in pure Mg and the alloy AZ91,” Scandinavian Journal of Metallurgy, vol. 27, no. 3, pp. 133–140, 1998. View at Google Scholar · View at Scopus
  21. A. M. Lafront, M. Ö. Öteyaka, R. D. Klassen, P. R. Roberge, and E. Ghali, “Study of the corrosion of zinc and aluminium magnesium alloys by electrochemical noise (EN) and scanning reference electrode technique (SRET),” in Proceedings of the NACE International Seminar, Montréal, Canada, August 2002.
  22. M. Ö. Öteyaka, A. M. Lafront, R. Tremblay, and E. Ghali, “Pitting corrosion of some magnesium alloy by scanning reference technique (SRET),” in Proceedings of the NACE International Seminar, Montréal, Canada, August 2002.
  23. M. Ö. Öteyaka, A. M. Lafront, E. Ghali, and R. Tremblay, “Pitting corrosion potential of magnesium alloys in different corrosive media,” in Proceedings of the NACE International Seminar, Montréal, Canada, August 2002.
  24. M. Ö. Öteyaka, A. M. Lafront, E. Ghali, and R. Tremblay, “Potentiodynamic study of some AZ and ZA magnesium alloys in different corrosive media,” in Proceedings of the Magnesium Alloys and Their Applications, K. U. Kainer, Ed., pp. 517–523, International Magnesium Association, Wolfsburg, Germany, 2003.
  25. ASTM B93/B93M-09, “Standard specifications for magnesium alloys in ingot form for sand castings, permanent mold castings, and die castings,” ASTM International, West Conshocken, Pa, USA, 2009.
  26. ASTM G5-94, “Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements,” ASTM International, West Conshocken, Pa, USA, 2004.
  27. H. H. Uhlig, D. N. Triadis, and M. Stern, “Effect of oxygen, chlorides, and calcium ion on corrosion inhibition of iron by polyphosphates,” Journal of Electrochemical Society, vol. 102, no. 2, pp. 59–66, 1955. View at Google Scholar
  28. G. L. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Advanced Engineering Materials, vol. 1, no. 1, pp. 11–33, 1999. View at Google Scholar · View at Scopus
  29. L. L. Shreir, R. A. Jarman, and G. T. Burnstein, “Basic concepts of corrosion, oxygen reduction, corrosion in aqueous solutions,” in Corrosion, vol. 1, pp. 99–105, Butterworth Heinemann, Oxford, UK, 1995. View at Google Scholar
  30. H. H. Uhlig and R. W. Revie, “Effect of dissolved oxygen,” in Corrosion and Corrosion Control, Iron and Steel, pp. 91–96, John Wiley & Sons, NY, NY, USA, 3rd edition, 1985. View at Google Scholar
  31. E. Ghali, “Magnesium performance,” in Corrosion Resistance of Aluminum and Magnesium Alloys, Understanding, Performance, and Testing, pp. 338–343, John Wiley & Sons, Hoboken, NJ, USA, 2010. View at Google Scholar