Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 924283, 10 pages
Research Article

Corrosion Behavior of Three Nanoclay Dispersion Methods of Epoxy/Organoclay Nanocomposites

1Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 239-8686, Japan
2Department of Industrial Engineering and Management, Nihon University, 2-1, Izumi-cho 1-chome, Narashino-shi, Chiba 275-8575, Japan

Received 23 May 2012; Revised 11 September 2012; Accepted 25 September 2012

Academic Editor: Leila Dhouibi

Copyright © 2012 Wiwat Keyoonwong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The aims of this study, firstly, to obtain high degree of clay exfoliation in the epoxy matrix by three dispersion methods such as normal mixing, shear mixing, and high-speed mixing and, secondly, to investigate corrosion behavior of epoxy/organoclay nanocomposite, immersion test, weight change, and penetration behavior were conducted. From the three mixing methods, the high-speed mixing method showed larger clay interlayer distance, smaller clay aggregate, and more homogeneity and expectedly resulted in high anticorrosive properties. Penetration depths of these nanocomposites showed a small difference; however, the most noticeable improvements in anticorrosion performance for epoxy/organoclay nanocomposites under high-speed mixing method were found to reduce penetration and weight uptake which are described via the model of nanoparticulate-filled structure and discussed in corrosion protection mechanism against environmental liquid penetration.