Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2013, Article ID 301689, 5 pages
http://dx.doi.org/10.1155/2013/301689
Research Article

Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ciprofloxacin Drug

Corrosion and Materials Science Unit, Department of Chemistry, University of Uyo, PMB 1017, Akwa Ibom State, Uyo 520001, Nigeria

Received 28 March 2013; Accepted 19 May 2013

Academic Editor: Jerzy A. Szpunar

Copyright © 2013 Inemesit A. Akpan and Nnanake-Abasi O. Offiong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. Desai and S. M. Kapopara, “Inhibiting effect of anisidines on corrosion of aluminium in hydrochloric acid,” Indian Journal of Chemical Technology, vol. 16, no. 6, pp. 486–491, 2009. View at Google Scholar · View at Scopus
  2. A. S. Fouda, G. Y. Elewady, and M. N. El-Haddad, “Corrosion inhibition of carbon steel in acidic solution using some azodyes,” Canadian Journal on Scientific and Industrial Research, vol. 2, no. 1, pp. 1–18, 2011. View at Google Scholar
  3. M. Ramananda Singh, K. Bhrara, and G. Singh, “The inhibitory effect of diethanolamine on corrosion of mild steel in 0.5M sulphuric acid medium,” Portugaliae Electrochimica Acta, vol. 26, pp. 479–492, 2008. View at Google Scholar
  4. H. Ashassi-Sorkhabi and S. A. Nabavi-Amri, “Corrosion inhibition of carbon steel in petroleum/water mixtures by N-containing compounds,” Acta Chimica Slovenica, vol. 47, no. 4, pp. 507–517, 2000. View at Google Scholar · View at Scopus
  5. I. El Ouali, B. Hammouti, A. Aouniti et al., “Thermodynamic characterisation of steel corrosion in HCl in the presence of 2-phenylthieno (3, 2-b) quinoxaline,” Journal of Materials and Environmental Science, vol. 1, no. 1, pp. 1–8, 2010. View at Google Scholar
  6. H. P. Sachin, M. H. M. Khan, and N. S. Bhujangaiah, “Surface modification of mild steel by orthophenylenediamine and its corrosion study,” International Journal of Electrochemical Science, vol. 4, no. 1, pp. 134–143, 2009. View at Google Scholar · View at Scopus
  7. S. A. Umoren, U. M. Eduok, and E. E. Oguzie, “Corrosion inhibition of mild steel in 1M H2SO4 by polyvinyl pyrrolidone and synergistic iodide additives,” Portugaliae Electrochimica Acta, vol. 26, pp. 533–546, 2008. View at Google Scholar
  8. A. Kumar, “Corrosion inhibition of mild steel in hydrochloric acid by Sodium Lauryl Sulfate (SLS),” E-Journal of Chemistry, vol. 5, no. 2, pp. 275–280, 2008. View at Google Scholar · View at Scopus
  9. A. K. Maayta, M. M. Fares, and A. F. Al-Shawabkeh, “Influence of linear alkylbenzene sulphonate on corrosion of iron in presence of magnetic field: kinetic and thermodynamic parameters,” International Journal of Corrosion, vol. 2010, Article ID 156194, 9 pages, 2010. View at Publisher · View at Google Scholar
  10. P. M. Niamien, A. Trokourey, and D. Sissouma, “Copper corrosion inhibition in 1M HNO3 by 2-thiobenzylbenzimidazole: adsorption and chemical modeling of inhibition efficiency,” International Journal of Research in Chemistry and Environment, vol. 2, no. 4, pp. 204–214, 2012. View at Google Scholar
  11. S. U. Ofoegbu and P. U. Ofoegbu, “Corrosion inhibition of mild steel in 0.1M hydrochloric acid media by chloroquine diphosphate,” ARPN Journal of Engineering and Applied Sciences, vol. 7, no. 3, pp. 272–276, 2012. View at Google Scholar
  12. S. Hari Kumar and S. Karthikeyan, “Inhibition of mild steel corrosion in hydrochloric acid solution by cloxacillin drug,” Journal of Materials and Environmental Science, vol. 3, no. 5, pp. 925–934, 2012. View at Google Scholar
  13. J. I. Bhat and V. Alva, “Corrosion inhibition of aluminium by 2-chloronicotinic acid in HCl medium,” Indian Journal of Chemical Technology, vol. 16, no. 3, pp. 228–233, 2009. View at Google Scholar · View at Scopus
  14. M. Abdallah, H. E. Megahed, M. A. Radwan, and E. Abdfattah, “Polyethylene glycol compounds as corrosion inhibitors for aluminium in 0.5M hydrochloric acid solution,” Journal of American Science, vol. 8, no. 11, pp. 49–55, 2012. View at Google Scholar
  15. I. A. Akpan and N. O. Offiong, “Effect of ethanolamine and ethylamine on the entropy content of the corrosion of mild steel in tetraoxosulphate (VI) acid solution,” Chemistry and Materials Research, vol. 2, no. 7, pp. 40–47, 2012. View at Google Scholar
  16. I. A. Akpan, “Inhibitory action of bile salt on the deterioration of asbestos in acid rain,” Bulletin of Pure and Applied Sciences, vol. 31, no. 2, pp. 49–58, 2012. View at Google Scholar
  17. B. S. Shylesha, T. V. Venkatesha, and B. M. Praveen, “Corrosion inhibition studies of mild steel by new inhibitor in different corrosive medium,” Research Journal of Chemical Sciences, vol. 1, no. 7, pp. 46–50, 2011. View at Google Scholar
  18. K. K. Sharma and L. K. Sharma, A Textbook of Physical Chemistry, Vikas Publishing House, New Delhi, India, 1999.
  19. H. Cang, Z. Fei, J. Shao, W. Shi, and Q. Xu, “Corrosion inhibition of mild steel by Aloes extracts in HCl solution medium,” International Journal of Electrochemical Science, vol. 8, pp. 720–734, 2013. View at Google Scholar
  20. B. M. Mistry, N. S. Patel, and S. Jauhari, “Heterocyclic organic derivatives as corrosion inhibitos for mild steel in 1N HCl,” Archives of Applied Science Research, vol. 3, no. 5, pp. 300–308, 2011. View at Google Scholar
  21. M. Mobin, M. Parveen, and M. Alam Khan, “Inhibition of mild steel corrosion in HCl solution using amino acid L-tryptophan,” Recent Research in Science and Technology, vol. 3, no. 12, pp. 40–45, 2011. View at Google Scholar
  22. M. A. Quraishi and R. Sardar, “Effect of some nitrogen and sulphur based synthetic inhibitors on corrosion inhibition of mild steel in acid solutions,” Indian Journal of Chemical Technology, vol. 11, no. 1, pp. 103–107, 2004. View at Google Scholar · View at Scopus
  23. L. A. Nnanna, V. U. Obasi, O. C. Nwadiuko, K. I. Mejeh, N. D. Ekekwe, and S. C. Udensi, “Inhibition by Newbouldia leavis leaf extract of the corrosion of aluminium in HCl and H2SO4 solutions,” Archives of Applied Science Research, vol. 4, no. 1, pp. 207–217, 2012. View at Google Scholar
  24. A. A. Khadom, A. S. Yaro, A. S. Altaie, and A. A. H. Kadum, “Electrochemical, activations and adsorption studies for the corrosion inhibition of low carbon steel in acidic media,” Portugaliae Electrochimica Acta, vol. 27, no. 6, pp. 699–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. O. R. M. Khalifa, A. K. Kassab, H. A. Mohamed, and S. Y. Ahmed, “Corrosion inhibition of copper and copper alloy in 3M nitric acid solution using organic inhibitors,” Journal of American Science, vol. 6, no. 8, pp. 487–498, 2010. View at Google Scholar
  26. B. Joseph, S. John, A. Joseph, and B. Narayana, “Imidazolidine-2-thione as corrosion inhibitor for mild steel in hydrochloric acid,” Indian Journal of Chemical Technology, vol. 17, no. 5, pp. 366–374, 2010. View at Google Scholar · View at Scopus
  27. S. Chitra, K. Parameswari, C. Sivakami, and A. Selvaraj, “Sulpha Schiff Bases as corrosion inhibitors for mild steel in 1M sulphuric acid,” Chemical Engineering Research Bulletin, vol. 14, pp. 1–6, 2010. View at Google Scholar
  28. R. V. Saliyan and A. V. Adhikari, “Corrosion inhibition of mild steel in acid media by quinolinyl thiopropano hydrazone,” Indian Journal of Chemical Technology, vol. 16, no. 2, pp. 162–174, 2009. View at Google Scholar · View at Scopus