Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2013, Article ID 543204, 13 pages
http://dx.doi.org/10.1155/2013/543204
Research Article

Corrosion Behavior and Adsorption Thermodynamics of Some Schiff Bases on Mild Steel Corrosion in Industrial Water Medium

Department of Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India

Received 31 March 2013; Revised 2 August 2013; Accepted 3 August 2013

Academic Editor: Ramazan Solmaz

Copyright © 2013 S. S. Shivakumar and K. N. Mohana. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Abd El-Rehim, S. A. M. Refaey, F. Taha, M. B. Saleh, and R. A. Ahmed, “Corrosion inhibition of mild steel in acidic medium using 2-amino thiophenol and 2-cyanomethyl benzothiazole,” Journal of Applied Electrochemistry, vol. 31, no. 4, pp. 429–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. A. Abdullah, E. A. Helal, and A. S. Fouda, “Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution,” Corrosion Science, vol. 48, p. 1639, 2006. View at Publisher · View at Google Scholar
  3. R. A. L. Sathiyanathan, S. Maruthamuthu, M. Selvanayagam, S. Mohanan, and N. Palaniswamy, “Corrosion inhibition of mild steel by ethanolic extracts of Ricinus communis leaves,” Indian Journal of Chemical Technology, vol. 12, no. 3, pp. 356–360, 2005. View at Google Scholar · View at Scopus
  4. I. L. Rozenfeld, Corrosion Inhibitors, McGraw-Hill, New York, NY, USA, 1981.
  5. A. Raman and P. Labine, Reviews on Corrosion Inhibitor Science and Technology, vol. 1, NACE, Houston, Tex, USA, 1986.
  6. M. Hosseini, S. F. L. Mertens, M. Ghorbani, and M. R. Arshadi, “Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media,” Materials Chemistry and Physics, vol. 78, no. 3, pp. 800–808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Singh and M. A. Quraishi, “Effect of Cefazolin on the corrosion of mild steel in HCl solution,” Corrosion Science, vol. 52, no. 1, pp. 152–160, 2010. View at Publisher · View at Google Scholar
  8. G. K. Gomma, “Corrosion inhibition of steel by benzotriazole in sulphuric acid,” Materials Chemistry and Physics, vol. 55, no. 3, pp. 235–240, 1998. View at Publisher · View at Google Scholar
  9. A. M. Al-Mayout, A. K. Al-Amury, and A. A. Al-Suhybani, “Inhibition of type 304 stainless steel corrosion in 2 M sulfuric acid by some benzoazoles-time and temperature effects,” Corrosion, vol. 57, no. 7, pp. 614–620, 2001. View at Publisher · View at Google Scholar
  10. A. E. Stoyanova, E. I. Sokolova, and S. N. Raicheva, “The inhibition of mild steel corrosion in 1 M HCl in the presence of linear and cyclic thiocarbamides—effect of concentration and temperature of the corrosion medium on their protective action,” Corrosion Science, vol. 39, no. 9, pp. 1595–1604, 1997. View at Google Scholar · View at Scopus
  11. M. Abdallah, M. Al-Agez, and A. S. Fouda, “Phenylhydrazone derivatives as corrosion inhibitors for -α-brass in hydrochloric acid solutions,” International Journal of Electrochemical Science, vol. 4, no. 3, pp. 336–352, 2009. View at Google Scholar · View at Scopus
  12. X. J. Raj and N. Rajendran, “Corrosion inhibition effect of substituted thiadiazoles on brass,” International Journal of Electrochemical Science, vol. 6, no. 2, pp. 348–366, 2011. View at Google Scholar · View at Scopus
  13. M. Bouklah, N. Benchat, B. Hammouti, A. Aouniti, and S. Kertit, “Thermodynamic characterisation of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4,” Materials Letters, vol. 60, no. 15, pp. 1901–1905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Bell, G. L. Conklin, and S. J. Childress, “The separation of ketimine isomers,” Journal of the American Chemical Society, vol. 85, no. 18, pp. 2868–2869, 1963. View at Google Scholar · View at Scopus
  15. T. Mimani, S. M. Mayanna, and N. Munichandraiah, “Influence of additives on the electrodeposition of nickel from a Watts bath: a cyclic voltammetric study,” Journal of Applied Electrochemistry, vol. 23, no. 4, pp. 339–345, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Durnie, R. De Marco, A. Jefferson, and B. Kinsella, “Development of a structure-activity relationship for oil field corrosion inhibitors,” Journal of the Electrochemical Society, vol. 146, no. 5, pp. 1751–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Shokry, M. Yuasa, M. Sekine, R. M. Isaa, H. Y. El Baradie, and G. K. Gomma, “Corrosion inhibition of mild steel by schiff base compounds in various aqueous solutions—part 1,” Corrosion Science, vol. 40, no. 12, pp. 2173–2186, 1998. View at Publisher · View at Google Scholar
  18. M. Hosseini, S. F. L. Mertens, M. Ghorbani, and M. R. Arshadi, “Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media,” Materials Chemistry and Physics, vol. 78, no. 3, pp. 800–808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Baghaei, I. Sheikhshoaie, and A. Dadgarnezhad, “Investigation on some two bidentate N,O-Schiff base ligands as corrosion inhibitors on mild steel in sulfuric acid media,” Asian Journal of Chemistry, vol. 17, no. 1, pp. 224–232, 2005. View at Google Scholar · View at Scopus
  20. K. C. Emregul, R. Kurtaran, and O. Atakol, “An investigation of chloride-substituted Schiff bases as corrosion inhibitors for steel,” Corrosion Science, vol. 45, no. 12, pp. 2803–2817, 2003. View at Publisher · View at Google Scholar
  21. S. Deng, X. Li, and H. Fu, “Alizarin violet 3B as a novel corrosion inhibitor for steel in HCl, H2SO4 solutions,” Corrosion Science, vol. 53, no. 11, pp. 3596–3602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. A. El-Rehim, H. H. Hassan, and M. A. Amin, “The corrosion inhibition study of sodium dodecyl benzene sulphonate to aluminium and its alloys in 1.0 M HCl solution,” Materials Chemistry and Physics, vol. 78, no. 2, pp. 337–348, 2002. View at Publisher · View at Google Scholar
  23. A. Aytac, U. Ozmen, and M. Kabasakaloglu, “Investigation of some Schiff bases as acidic corrosion of alloy AA3102,” Materials Chemistry and Physics, vol. 89, no. 1, pp. 176–181, 2005. View at Publisher · View at Google Scholar
  24. S. L. Li, S. Chen, S. B. Lei, H. Ma, R. Yu, and D. Liu, “Investigation on some Schiff bases as HCl corrosioninhibitors for copper,” Corrosion Science, vol. 41, no. 7, pp. 1273–1287, 1999. View at Publisher · View at Google Scholar
  25. S. Chitra, K. Parameswari, and A. Selvaraj, “Dianiline schiff bases as inhibitors of mild steel corrosion in acid media,” International Journal of Electrochemical Science, vol. 5, no. 11, pp. 1675–1697, 2010. View at Google Scholar · View at Scopus
  26. S. Bilgic and N. Cabiskan, “An investigation of some Schiff bases as corrosion inhibitors for austenitic chromium-nickel steel in H2SO4,” Journal of Applied Electrochemistry, vol. 31, no. 1, pp. 79–83, 2001. View at Publisher · View at Google Scholar
  27. D. F. Shirver, P. W. Attinz, and C. H. Langford, Inorganic Chemistry, Oxford University Press, Oxford, UK, 2nd edition, 1994.
  28. S. Thota, S. S. Karki, K. N. Jayaveera, J. Balzarini, and E. D. Clercq, “Synthesis and cytotoxic activity of some mononuclear Ru(II) complexes,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 1, no. 3, pp. 704–713, 2010. View at Google Scholar · View at Scopus
  29. P. T. Peter and S. T. C. Daniels, “Thiosemicarbazide as a reagent for the identification of aldehydes, ketones, and quinines,” Recueil des Travaux Chimiques, vol. 69, pp. 1545–1547, 1958. View at Google Scholar
  30. M. Benabdellah, R. Touzani, A. Aouniti et al., “Inhibitive action of some bipyrazolic compounds on the corrosion of steel in 1 M HCl—part I: electrochemical study,” Materials Chemistry and Physics, vol. 105, no. 2-3, pp. 373–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Raja and M. Sethuraman, “Atropine sulphate as corrosion inhibitor for mild steel in sulphuric acid medium,” Materials Letters, vol. 62, no. 10-11, pp. 1602–1604, 2008. View at Publisher · View at Google Scholar
  32. H. Ashassi-Sorkhabi, M. R. Majidi, and K. Seyyedi, “Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution,” Applied Surface Science, vol. 225, no. 1–4, pp. 176–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. E. McCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” The Journal of The Electrochemical Society, vol. 119, no. 2, pp. 146–154, 1972. View at Publisher · View at Google Scholar
  34. E. E. Oguzie, Y. Li, and F. H. Wang, “Effect of 2-amino-3-mercaptopropanoic acid (cysteine) on the corrosion behaviour of low carbon steel in sulphuric acid,” Electrochimica Acta, vol. 53, no. 2, pp. 909–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Bastidas, J. L. Polo, and E. Cano, “Substitutional inhibition mechanism of mild steel hydrochloric acid corrosion by hexylamine and dodecylamine,” Journal of Applied Electrochemistry, vol. 30, no. 10, pp. 1173–1177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. E.-S. M. Sherif, R. M. Erasmus, and J. D. Comins, “Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1,2,4-triazole-5-thiol,” Journal of Colloid and Interface Science, vol. 306, no. 1, pp. 96–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Flis and T. Zakroczymski, “Impedance study of reinforcing steel in simulated pore solution with tannin,” Journal of the Electrochemical Society, vol. 143, no. 8, pp. 2458–2464, 1996. View at Google Scholar · View at Scopus
  38. F. Bentiss, M. Lebrini, and M. Lagrene, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005. View at Publisher · View at Google Scholar
  39. G. K. Gomma and M. H. Wahdan, “Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution,” Materials Chemistry & Physics, vol. 39, no. 3, pp. 209–213, 1995. View at Google Scholar · View at Scopus
  40. M. R. Arshadi, M. Lashgari, and G. A. Parsafar, “Cluster approach to corrosion inhibition problems: interaction studies,” Materials Chemistry and Physics, vol. 86, no. 2-3, pp. 311–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Popova, M. Christov, and T. Deligeorgiev, “Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid,” Corrosion, vol. 59, no. 9, pp. 756–764, 2003. View at Google Scholar · View at Scopus
  42. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. I. B. Obot, N. O. Obi-Egbedi, and S. A. Umoren, “Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl,” Corrosion Science, vol. 51, no. 8, pp. 1868–1875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Szauer and A. Brandt, “Adsorption of oleates of various amines on iron in acidic solution,” Electrochimica Acta, vol. 26, no. 9, pp. 1253–1256, 1981. View at Google Scholar · View at Scopus
  45. M. Bouklah, B. Hammouti, M. Lagrenée, and F. Bentiss, “Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium,” Corrosion Science, vol. 48, no. 9, pp. 2831–2842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Kraka and D. Cremer, “Computer design of anticancer drugs. A new enediyne warhead,” Journal of the American Chemical Society, vol. 122, no. 34, pp. 8245–8264, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Lukovits, E. Kálmán, and F. Zucchi, “Corrosion inhibitors—correlation between electronic structure and efficiency,” Corrosion, vol. 57, no. 1, pp. 3–8, 2001. View at Google Scholar · View at Scopus
  48. I. Ahamad, R. Prasad, and M. A. Quraishi, “Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media,” Corrosion Science, vol. 52, no. 4, pp. 1472–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Fang and J. Li, “Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides,” Journal of Molecular Structure: THEOCHEM, vol. 593, no. 1–3, pp. 179–185, 2002. View at Publisher · View at Google Scholar
  50. P. Zhao, Q. Liang, and Y. Li, “Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl,” Applied Surface Science, vol. 252, no. 5, pp. 1596–1607, 2005. View at Publisher · View at Google Scholar
  51. D. Q. Zhang, Z. X. An, Q. Y. Pan, L. X. Gao, and G. D. Zhou, “Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel,” Corrosion Science, vol. 48, no. 6, pp. 1437–1448, 2006. View at Publisher · View at Google Scholar
  52. L. Lukovits, E. Kalman, and F. Zucchi, “Corrosion inhibitors—correlation between electronic structure and efficiency,” Corrosion, vol. 57, no. 1, pp. 3–8, 2001. View at Publisher · View at Google Scholar
  53. L. M. Rodrigues Valdez, W. Villamisar, M. Casales et al., “Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors,” Corrosion Science, vol. 48, no. 12, pp. 4053–4064, 2006. View at Publisher · View at Google Scholar
  54. N. K. Allam, “Thermodynamic and quantum chemistry characterization of theadsorption of triazole derivatives during Muntz corrosionin acidic and neutral solutions,” Applied Surface Science, vol. 253, pp. 4570–4577, 2007. View at Google Scholar
  55. I. B. Obot and N. O. Obi-Egbedi, “Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5 M H2SO4 solution,” Materials Chemistry and Physics, vol. 122, no. 2-3, pp. 325–328, 2010. View at Publisher · View at Google Scholar
  56. I. B. Obot, N. O. Obi-Egbedi, and S. A. Umoren, “The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium,” Corrosion Science, vol. 51, no. 2, pp. 276–282, 2009. View at Publisher · View at Google Scholar · View at Scopus