Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2011, Article ID 713435, 7 pages
http://dx.doi.org/10.1155/2011/713435
Review Article

Atg14: A Key Player in Orchestrating Autophagy

1Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Jo Nishi-6 Chome, Kitaku, Sapporo 060-0812, Japan
2Frontier Research Center, Tokyo Institute of Technology, 4259-S2-12 Nagatsuda-Cho, Midoriku, Yokohama 226-8503, Japan

Received 30 May 2011; Accepted 28 July 2011

Academic Editor: Liza Pon

Copyright © 2011 Keisuke Obara and Yoshinori Ohsumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. I. Nakagawa, A. Amano, N. Mizushima et al., “Autophagy defends cells against invading group A Streptococcus,” Science, vol. 306, no. 5698, pp. 1037–1040, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Tsukada and Y. Ohsumi, “Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 333, no. 1-2, pp. 169–174, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Thumm, R. Egner, B. Koch et al., “Isolation of autophagocytosis mutants of Saccharomyces cerevisiae,” FEBS Letters, vol. 349, no. 2, pp. 275–280, 1994. View at Google Scholar
  7. D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, “Dynamics and diversity in autophagy mechanisms: lessons from yeast,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 458–467, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. Z. Yang and D. J. Klionsky, “An overview of the molecular mechanism of autophagy,” Current Topics in Microbiology and Immunology, vol. 335, no. 1, pp. 1–32, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. P. V. Schu, K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr, “Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting,” Science, vol. 260, no. 5104, pp. 88–91, 1993. View at Publisher · View at Google Scholar
  11. J. S. Robinson, D. J. Klionsky, L. M. Banta, and S. D. Emr, “Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases,” Molecular and Cellular Biology, vol. 8, no. 11, pp. 4936–4948, 1988. View at Google Scholar · View at Scopus
  12. A. Kihara, T. Noda, N. Ishihara, and Y. Ohsumi, “Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 152, no. 3, pp. 519–530, 2001. View at Google Scholar · View at Scopus
  13. K. Obara, T. Noda, K. Niimi, and Y. Ohsumi, “Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae,” Genes to Cells, vol. 13, no. 6, pp. 537–547, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. K. Obara, T. Sekito, K. Niimi, and Y. Ohsumi, “The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23972–23980, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. U. Nair, Y. Cao, Z. Xie, and D. J. Klionsky, “Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy,” Journal of Biological Chemistry, vol. 285, no. 15, pp. 11476–11488, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. Simonsen and S. A. Tooze, “Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes,” Journal of Cell Biology, vol. 186, no. 6, pp. 773–782, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. Obara and Y. Ohsumi, “PtdIns 3-kinase orchestrates autophagosome formation in yeast,” Journal of Lipids, vol. 2011, Article ID 498768, 9 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. E. Itakura, C. Kishi, K. Inoue, and N. Mizushima, “Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG,” Molecular Biology of the Cell, vol. 19, no. 12, pp. 5360–5372, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Q. Sun, W. Fan, K. Chen, X. Ding, S. Chen, and Q. Zhong, “Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19211–19216, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Matsunaga, T. Saitoh, K. Tabata et al., “Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages,” Nature Cell Biology, vol. 11, no. 4, pp. 385–396, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. Y. Zhong, Q. J. Wang, X. Li et al., “Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex,” Nature Cell Biology, vol. 11, no. 4, pp. 468–476, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Petiot, E. Ogier-Denis, E. F. C. Blommaart, A. J. Meijer, and P. Codogno, “Distinct classes of phosphatidylinositol 3-kinases are involved in signaling pathways that control macro-autophagy in HT-29 cells,” Journal of Biological Chemistry, vol. 275, no. 2, pp. 992–998, 2000. View at Google Scholar · View at Scopus
  23. W. J. Brown, D. B. DeWald, S. D. Emr, H. Plutner, and W. E. Balch, “Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells,” Journal of Cell Biology, vol. 130, no. 4, pp. 781–796, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. H. W. Davidson, “Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes,” Journal of Cell Biology, vol. 130, no. 4, pp. 797–805, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Baba, K. Takeshige, N. Baba, and Y. Ohsumi, “Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization,” Journal of Cell Biology, vol. 124, no. 6, pp. 903–913, 1994. View at Google Scholar
  26. K. Obara and Y. Ohsumi, “Dynamics and function of PtdIns(3)P in autophagy,” Autophagy, vol. 4, no. 7, pp. 952–954, 2008. View at Google Scholar
  27. J. H. Stack, D. B. DeWald, K. Takegawa, and S. D. Emr, “Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast,” Journal of Cell Biology, vol. 129, no. 2, pp. 321–334, 1995. View at Google Scholar
  28. P. K. Herman, J. H. Stack, and S. D. Emr, “A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of Vps15p in vacuolar protein delivery,” EMBO Journal, vol. 10, no. 13, pp. 4049–4060, 1991. View at Google Scholar
  29. B. Levine, S. Sinha, and G. Kroemer, “Bcl-2 family members: dual regulators of apoptosis and autophagy,” Autophagy, vol. 4, no. 5, pp. 600–606, 2008. View at Google Scholar
  30. G. M. Fimia, A. Stoykova, A. Romagnoli et al., “Ambra1 regulates autophagy and development of the nervous system,” Nature, vol. 447, no. 7148, pp. 1121–1125, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. S. Kametaka, T. Okano, M. Ohsumi, and Y. Ohsumi, “Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 273, no. 35, pp. 22284–22291, 1998. View at Publisher · View at Google Scholar
  32. K. Obara, T. Sekito, and Y. Ohsumi, “Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 17, no. 4, pp. 1527–1539, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. K. Suzuki, T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi, “The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation,” EMBO Journal, vol. 20, no. 21, pp. 5971–5981, 2001. View at Publisher · View at Google Scholar · View at PubMed
  34. Q. Sun, W. Westphal, K. N. Wong, I. Tan, and Q. Zhong, “Rubicon controls endosome maturation as a Rab7 effector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19338–19343, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. E. Itakura and N. Mizushima, “Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins,” Autophagy, vol. 6, no. 6, pp. 764–776, 2010. View at Publisher · View at Google Scholar
  36. K. Matsunaga, E. Morita, T. Saitoh et al., “Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L,” Journal of Cell Biology, vol. 190, no. 4, pp. 511–521, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at PubMed
  38. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009. View at Google Scholar
  39. P. Ylä-Anttila, H. Vihinen, E. Jokitalo, and E. L. Eskelinen, “3D tomography reveals connections between the phagophore and endoplasmic reticulum,” Autophagy, vol. 5, no. 8, pp. 1180–1185, 2009. View at Publisher · View at Google Scholar
  40. W. Fan, A. Nassiri, and Q. Zhong, “Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7769–7774, 2011. View at Publisher · View at Google Scholar · View at PubMed
  41. K. Suzuki, Y. Kubota, T. Sekito, and Y. Ohsumi, “Hierarchy of Atg proteins in pre-autophagosomal structure organization,” Genes to Cells, vol. 12, no. 2, pp. 209–218, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, “Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion,” Cell, vol. 130, no. 1, pp. 165–178, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. H. Abeliovich, W. A. Dunn Jr., J. Kim, and D. J. Klionsky, “Dissection of autophagosome biogenesis into distinct nucleation and expansion steps,” Journal of Cell Biology, vol. 151, no. 5, pp. 1025–1034, 2000. View at Publisher · View at Google Scholar
  44. Z. Xie, U. Nair, and D. J. Klionsky, “Atg8 controls phagophore expansion during autophagosome formation,” Molecular Biology of the Cell, vol. 19, no. 8, pp. 3290–3298, 2008. View at Publisher · View at Google Scholar · View at PubMed
  45. I. Vergne, E. Roberts, R. A. Elmaoued et al., “Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy,” EMBO Journal, vol. 28, no. 15, pp. 2244–2258, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. N. Taguchi-Atarashi, M. Hamasaki, K. Matsunaga et al., “Modulation of local Ptdins3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy,” Traffic, vol. 11, no. 4, pp. 468–478, 2010. View at Publisher · View at Google Scholar · View at PubMed
  47. Y. Kabeya, N. N. Noda, Y. Fujioka, K. Suzuki, F. Inagaki, and Y. Ohsumi, “Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 389, no. 4, pp. 612–615, 2009. View at Publisher · View at Google Scholar · View at PubMed
  48. T. Hara, A. Takamura, C. Kishi et al., “FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells,” Journal of Cell Biology, vol. 181, no. 3, pp. 497–510, 2008. View at Publisher · View at Google Scholar · View at PubMed