Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 431684, 18 pages
http://dx.doi.org/10.1155/2012/431684
Review Article

The Many Faces of Mitochondrial Autophagy: Making Sense of Contrasting Observations in Recent Research

Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Clayton VIC 3800, Australia

Received 14 November 2011; Accepted 21 December 2011

Academic Editor: Fulvio Reggiori

Copyright © 2012 Alexander I. May et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Tanida, “Autophagosome formation and molecular mechanism of autophagy,” Antioxidants and Redox Signaling, vol. 14, no. 11, pp. 2201–2214, 2011. View at Publisher · View at Google Scholar
  2. Y. Inoue and D. J. Klionsky, “Regulation of macroautophagy in Saccharomyces cerevisiae,” Seminars in Cell and Developmental Biology, vol. 21, no. 7, pp. 664–670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. K. W. Kiel, “Autophagy in unicellular eukaryotes,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1541, pp. 819–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Tanida, “Autophagy basics,” Microbiology and Immunology, vol. 55, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Onodera and Y. Ohsumi, “Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation,” Journal of Biological Chemistry, vol. 280, no. 36, pp. 31582–31586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Suzuki and Y. Ohsumi, “Current knowledge of the pre-autophagosomal structure (PAS),” FEBS Letters, vol. 584, no. 7, pp. 1280–1286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Suzuki, Y. Kubota, T. Sekito, and Y. Ohsumi, “Hierarchy of Atg proteins in pre-autophagosomal structure organization,” Genes to Cells, vol. 12, no. 2, pp. 209–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, “Plasma membrane contributes to the formation of pre-autophagosomal structures,” Nature Cell Biology, vol. 12, no. 8, pp. 747–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. van der Vaart, J. Griffith, and F. Reggiori, “Exit from the golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 21, no. 13, pp. 2270–2284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan et al., “Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation,” Cell, vol. 141, no. 4, pp. 656–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Reggiori and D. J. Klionsky, “Autophagosomes: biogenesis from scratch?” Current Opinion in Cell Biology, vol. 17, no. 4, pp. 415–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Yang, J. Huang, J. Geng, U. Nair, and D. J. Klionsky, “Atg22 recycles amino acids to link the degradative and recycling functions of autophagy,” Molecular Biology of the Cell, vol. 17, no. 12, pp. 5094–5104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Nakatogawa, Y. Ichimura, and Y. Ohsumi, “Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion,” Cell, vol. 130, no. 1, pp. 165–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Müller, T. Sattler, M. Flötenmeyer, H. Schwarz, H. Plattner, and A. Mayer, “Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding,” Journal of Cell Biology, vol. 151, no. 3, pp. 519–528, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Mijaljica, M. Prescott, and R. J. Devenish, “Microautophagy in mammalian cells: revisiting a 40-year-old conundrum,” Autophagy, vol. 7, no. 7, pp. 673–682, 2011. View at Publisher · View at Google Scholar
  18. M. A. Lynch-Day and D. J. Klionsky, “The Cvt pathway as a model for selective autophagy,” FEBS Letters, vol. 584, no. 7, pp. 1359–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Sakai, M. Oku, I. J. van der Klei, and J. A. K. W. Kiel, “Pexophagy: autophagic degradation of peroxisomes,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1767–1775, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Bernales, K. L. McDonald, and P. Walter, “Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response,” PLoS Biology, vol. 4, no. 12, pp. 2311–2324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Kraft, A. Deplazes, M. Sohrmann, and M. Peter, “Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease,” Nature Cell Biology, vol. 10, no. 5, pp. 602–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. Lemasters, “Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging,” Rejuvenation Research, vol. 8, no. 1, pp. 3–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Tolkovsky, “Mitophagy,” Biochimica et Biophysica Acta, vol. 1793, no. 9, pp. 1508–1515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Wang and D. J. Klionsky, “Mitochondria removal by autophagy,” Autophagy, vol. 7, no. 3, pp. 297–300, 2011. View at Publisher · View at Google Scholar
  25. R. Krick, Y. Muehe, T. Prick et al., “Piecemeal microautophagy of the nucleus requires the core macroautophagy genes,” Molecular Biology of the Cell, vol. 19, no. 10, pp. 4492–4505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Roberts, S. Moshitch-Moshkovitz, E. Kvam, E. O'Toole, M. Winey, and D. S. Goldfarb, “Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 14, no. 1, pp. 129–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Mijaljica, M. Prescott, and R. J. Devenish, “The intricacy of nuclear membrane dynamics during nucleophagy,” Nucleus, vol. 1, no. 3, pp. 213–223, 2010. View at Google Scholar · View at Scopus
  28. R. Sumpter Jr and B. Levine, “Selective autophagy and viruses,” Autophagy, vol. 7, no. 3, pp. 260–265, 2011. View at Publisher · View at Google Scholar
  29. E. Campoy and M. I. Colombo, “Autophagy in intracellular bacterial infection,” Biochimica et Biophysica Acta, vol. 1793, no. 9, pp. 1465–1477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Johansen and T. Lamark, “Selective autophagy mediated by autophagic adapter proteins,” Autophagy, vol. 7, no. 3, pp. 279–296, 2011. View at Publisher · View at Google Scholar
  31. L. Yu, L. Strandberg, and M. J. Lenardo, “The selectivity of autophagy and its role in cell death and survival,” Autophagy, vol. 4, no. 5, pp. 567–573, 2008. View at Google Scholar · View at Scopus
  32. A. Abeliovich, “Parkinson's disease: mitochondrial damage control,” Nature, vol. 463, no. 7282, pp. 744–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Banerjee, M. F. Beal, and B. Thomas, “Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications,” Trends in Neurosciences, vol. 33, no. 12, pp. 541–549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. M. Wilhelmus, S. M. A. van der Pol, Q. Jansen et al., “Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions,” Free Radical Biology and Medicine, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Bereiter-Hahn and M. Voth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microscopy Research and Technique, vol. 27, no. 3, pp. 198–219, 1994. View at Google Scholar · View at Scopus
  36. D. C. Chan, “Mitochondria: dynamic organelles in disease, aging, and development,” Cell, vol. 125, no. 7, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. B. Taylor and J. Rutter, “Mitochondrial quality control by the ubiquitin-proteasome system,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1509–1513, 2011. View at Publisher · View at Google Scholar
  38. T. Kanki and D. J. Klionsky, “Mitophagy in yeast occurs through a selective mechanism,” Journal of Biological Chemistry, vol. 283, no. 47, pp. 32386–32393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. J. Youle and D. P. Narendra, “Mechanisms of mitophagy,” Nature Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 9–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Takeshige, M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi, “Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction,” Journal of Cell Biology, vol. 119, no. 2, pp. 301–312, 1992. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Kiššová, M. Deffieu, S. Manon, and N. Camougrand, “Uth1p is involved in the autophagic degradation of mitochondria,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 39068–39074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Kiššova, B. Salin, J. Schaeffer, S. Bhatia, S. Manon, and N. Camougrand, “Selective and non-selective autophagic degradation of mitochondria in yeast,” Autophagy, vol. 3, no. 4, pp. 329–336, 2007. View at Google Scholar · View at Scopus
  43. R. Tal, G. Winter, N. Ecker, D. J. Klionsky, and H. Abeliovich, “Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival,” Journal of Biological Chemistry, vol. 282, no. 8, pp. 5617–5624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Journo, A. Mor, and H. Abeliovich, “Aup1-mediated regulation of Rtg3 during mitophagy,” Journal of Biological Chemistry, vol. 284, no. 51, pp. 35885–35895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi, “Mitochondria-Anchored Receptor Atg32 Mediates Degradation of Mitochondria via Selective Autophagy,” Developmental Cell, vol. 17, no. 1, pp. 87–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Kanki, K. Wang, Y. Cao, M. Baba, and D. J. Klionsky, “Atg32 Is a Mitochondrial Protein that Confers Selectivity during Mitophagy,” Developmental Cell, vol. 17, no. 1, pp. 98–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Ohsumi, “Molecular dissection of autophagy: two ubiquitin-like systems,” Nature Reviews Molecular Cell Biology, vol. 2, no. 3, pp. 211–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Kanki, K. Wang, M. Baba et al., “A genomic screen for yeast mutants defective in selective mitochondria autophagy,” Molecular Biology of the Cell, vol. 20, no. 22, pp. 4730–4738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Goldman, R. Taylor, Y. Zhang, and S. Jin, “Autophagy and the degradation of mitochondria,” Mitochondrion, vol. 10, no. 4, pp. 309–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. L. Campbell and P. E. Thorsness, “Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments,” Journal of Cell Science, vol. 111, no. 16, pp. 2455–2464, 1998. View at Google Scholar · View at Scopus
  51. M. Priault, B. Salin, J. Schaeffer, F. M. Vallette, J. P. di Rago, and J. C. Martinou, “Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast,” Cell Death and Differentiation, vol. 12, no. 12, pp. 1613–1621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Nowikovsky, S. Reipert, R. J. Devenish, and R. J. Schweyen, “Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy,” Cell Death and Differentiation, vol. 14, no. 9, pp. 1647–1656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Deffieu, I. Bhatia-Kiššová, B. Salin, A. Galinier, S. Manon, and N. Camougrand, “Glutathione participates in the regulation of mitophagy in yeast,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 14828–14837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Mao, K. Wang, M. Zhao, T. Xu, and D. J. Klionsky, “Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 193, no. 4, pp. 755–767, 2011. View at Publisher · View at Google Scholar
  55. N. Mendl, A. Occhipinti, M. Müller, P. Wild, I. Dikic, and A. S. Reichert, “Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2,” Journal of Cell Science, vol. 124, no. 8, pp. 1339–1350, 2011. View at Publisher · View at Google Scholar
  56. D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  58. R. Scherz-Shouval and Z. Elazar, “Regulation of autophagy by ROS: physiology and pathology,” Trends in Biochemical Sciences, vol. 36, no. 1, pp. 30–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. D. B. Murray, K. Haynes, and M. Tomita, “Redox regulation in respiring Saccharomyces cerevisiae,” Biochimica et Biophysica Acta, vol. 1810, no. 10, pp. 945–958, 2011. View at Publisher · View at Google Scholar
  60. W. L. Yen and D. J. Klionsky, “How to live long and prosper: autophagy, mitochondria, and aging,” Physiology, vol. 23, no. 5, pp. 248–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Szumiel, “Autophagy, reactive oxygen species and the fate of mammalian cells,” Free Radical Research, vol. 45, no. 3, pp. 253–265, 2011. View at Publisher · View at Google Scholar
  62. Y. Zhang, H. Qi, R. Taylor, W. Xu, L. F. Liu, and S. Jin, “The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains,” Autophagy, vol. 3, no. 4, pp. 337–346, 2007. View at Google Scholar · View at Scopus
  63. S. W. Suzuki, J. Onodera, and Y. Ohsumi, “Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction,” PLoS ONE, vol. 6, no. 2, 2011. View at Publisher · View at Google Scholar
  64. C. M.T. Marobbio, I. Pisano, V. Porcelli, F. M. Lasorsa, and L. Palmieri, “Rapamycin reduces oxidative stress in frataxin-deficient yeast cells,” Mitochondrion, vol. 12, no. 1, pp. 156–161, 2012. View at Publisher · View at Google Scholar
  65. J. D. Rabinowitz and E. White, “Autophagy and metabolism,” Science, vol. 330, no. 6009, pp. 1344–1348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Zaman, S. I. Lippman, X. Zhao, and J. R. Broach, “How Saccharomyces responds to nutrients,” Annual Review of Genetics, vol. 42, pp. 27–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Mijaljica, M. Prescott, and R. J. Devenish, “A fluorescence microscopy assay for monitoring mitophagy in the yeastSaccharomyces cerevisiae,” Journal of Visualized Experiments, no. 53, Article ID e2779, 2011. View at Publisher · View at Google Scholar
  68. K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi, “A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria,” Autophagy, vol. 5, no. 8, pp. 1203–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. E. Cardenas, N. S. Cutler, M. C. Lorenz, C. J. Di Como, and J. Heitman, “The TOR signaling cascade regulates gene expression in response to nutrients,” Genes and Development, vol. 13, no. 24, pp. 3271–3279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. D. J. Klionsky, H. Abeliovich, P. Agostinis et al., “Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes,” Autophagy, vol. 4, no. 2, pp. 151–175, 2008. View at Google Scholar · View at Scopus
  71. T. Prick, M. Thumm, K. Köhrer, D. Häussinger, and S. Vom Dahl, “In yeast, loss of Hog1 leads to osmosensitivity of autophagy,” Biochemical Journal, vol. 394, no. 1, pp. 153–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Chen and D. J. Klionsky, “The regulation of autophagy—unanswered questions,” Journal of Cell Science, vol. 124, no. 2, pp. 161–170, 2011. View at Publisher · View at Google Scholar
  73. E. Cebollero and F. Reggiori, “Regulation of autophagy in yeast Saccharomyces cerevisiae,” Biochimica et Biophysica Acta, vol. 1793, no. 9, pp. 1413–1421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. C. He and D. J. Klionsky, “Regulation mechanisms and signaling pathways of autophagy,” Annual Review of Genetics, vol. 43, pp. 67–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Rohde, J. Heitman, and M. E. Cardenas, “The TOR Kinases Link Nutrient Sensing to Cell Growth,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 9583–9586, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. K. A. Staschke, S. Dey, J. M. Zaborske et al., “Integration of general amino acid control and Target of Rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast,” Journal of Biological Chemistry, vol. 285, no. 22, pp. 16893–16911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Uritani, H. Hidaka, Y. Hotta, M. Ueno, T. Ushimaru, and T. Toda, “Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase,” Genes to Cells, vol. 11, no. 12, pp. 1367–1379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Loewith, E. Jacinto, S. Wullschleger et al., “Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control,” Molecular Cell, vol. 10, no. 3, pp. 457–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Kamada, K. I. Yoshino, C. Kondo et al., “Tor directly controls the Atg1 kinase complex to regulate autophagy,” Molecular and Cellular Biology, vol. 30, no. 4, pp. 1049–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Ravikumar, C. Vacher, Z. Berger et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nature Genetics, vol. 36, no. 6, pp. 585–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. D. C. Rubinsztein, “The roles of intracellular protein-degradation pathways in neurodegeneration,” Nature, vol. 443, no. 7113, pp. 780–786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Noda and Y. Ohsumi, “Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 3963–3966, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Paglin, N. Y. Lee, C. Nakar et al., “Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells,” Cancer Research, vol. 65, no. 23, pp. 11061–11070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Aoki, T. Kanki, Y. Hirota et al., “Phosphorylation of serine 114 on Atg32 mediates mitophagy,” Molecular Biology of the Cell, vol. 22, no. 17, pp. 3206–3217, 2011. View at Publisher · View at Google Scholar
  86. M. C. Gustin, J. Albertyn, M. Alexander, and K. Davenport, “Map kinase pathways in the yeast Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1264–1300, 1998. View at Google Scholar · View at Scopus
  87. P. P. Roux and J. Blenis, “ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 320–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. P. J. Westfall, D. R. Ballon, and J. Thorner, “When the stress of your environment makes you go HOG wild,” Science, vol. 306, no. 5701, pp. 1511–1512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Martín, M. C. Castellanos, R. Cenamor, M. Sánchez, M. Molina, and C. Nombela, “Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase gene SLT2(MPK1) rescued from yeast autolytic mutants,” Current Genetics, vol. 29, no. 6, pp. 516–522, 1996. View at Google Scholar · View at Scopus
  90. J. J. Ritch, S. M. Davidson, J. J. Sheehan, and N. Austriaco, “The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis,” FEMS Yeast Research, vol. 10, no. 2, pp. 168–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. C. M. Grant, F. H. MacIver, and I. W. Dawes, “Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae,” Current Genetics, vol. 29, no. 6, pp. 511–515, 1996. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Komeili, K. P. Wedaman, E. K. O'Shea, and T. Powers, “Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors,” Journal of Cell Biology, vol. 151, no. 4, pp. 863–878, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. V. Soubannier and H. M. McBride, “Positioning mitochondrial plasticity within cellular signaling cascades,” Biochimica et Biophysica Acta, vol. 1793, no. 1, pp. 154–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Marchant and D. G. Smith, “Membranous structures in yeasts,” Biological reviews of the Cambridge Philosophical Society, vol. 43, no. 4, pp. 459–480, 1968. View at Google Scholar · View at Scopus
  95. N. Mizushima, T. Yoshimori, and B. Levine, “Methods in Mammalian Autophagy Research,” Cell, vol. 140, no. 3, pp. 313–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. D. J. Klionsky, A. M. Cuervo, and P. O. Seglen, “Methods for monitoring autophagy from yeast to human,” Autophagy, vol. 3, no. 3, pp. 181–206, 2007. View at Google Scholar · View at Scopus
  97. C. J. Rosado, D. Mijaljica, I. Hatzinisiriou, M. Prescott, and R. J. Devenish, “Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast,” Autophagy, vol. 4, no. 2, pp. 205–213, 2008. View at Google Scholar · View at Scopus
  98. T. Kanki, D. Kang, and D. J. Klionsky, “Monitoring mitophagy in yeast: the Om45-GFP processing assay,” Autophagy, vol. 5, no. 8, pp. 1186–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. R. H. de Deken, “The Crabtree effect: a regulatory system in yeast,” Journal of General Microbiology, vol. 44, no. 2, pp. 149–156, 1966. View at Google Scholar · View at Scopus
  100. E. Braschi, V. Goyon, R. Zunino, A. Mohanty, L. Xu, and H. M. McBride, “Vps35 mediates vesicle transport between the mitochondria and peroxisomes,” Current Biology, vol. 20, no. 14, pp. 1310–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Hatano, Y. Li, K. Sato et al., “Novel PINK1 mutations in early-onset parkinsonism,” Annals of Neurology, vol. 56, no. 3, pp. 424–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Sandoval, P. Thiagarajan, S. K. Dasgupta et al., “Essential role for Nix in autophagic maturation of erythroid cells,” Nature, vol. 454, no. 7201, pp. 232–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Mortensen, D. J. P. Ferguson, and A. K. Simon, “Mitochondrial clearance by autophagy in developing erythrocytes: clearly important, but just how much so?” Cell Cycle, vol. 9, no. 10, pp. 1901–1906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. S. P. Elmore, T. Qian, S. F. Grissom, and J. J. Lemasters, “The mitochondrial permeability transition initiates autophagy in rat hepatocytes,” The FASEB Journal, vol. 15, no. 12, pp. 2286–2287, 2001. View at Google Scholar · View at Scopus
  107. G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Amo, S. Sato, S. Saiki et al., “Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects,” Neurobiology of Disease, vol. 41, no. 1, pp. 111–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. R. K. Dagda, A. M. Gusdon, I. Pien et al., “Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease,” Cell Death and Differentiation, vol. 18, no. 12, pp. 1914–1923, 2011. View at Publisher · View at Google Scholar
  110. G. Twig and O. S. Shirihai, “The interplay between mitochondrial dynamics and mitophagy,” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1939–1951, 2011. View at Publisher · View at Google Scholar
  111. A. Rakovic, A. Grünewald, J. Kottwitz et al., “Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts,” PLoS ONE, vol. 6, no. 3, 2011. View at Publisher · View at Google Scholar
  112. M. Müller and A. S. Reichert, “Mitophagy, mitochondrial dynamics and the general stress response in yeast,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1514–1519, 2011. View at Publisher · View at Google Scholar
  113. R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar, “Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4,” EMBO Journal, vol. 26, no. 7, pp. 1749–1760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. R. K. Dagda, J. Zhu, S. M. Kulich, and C. T. Chu, “Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease,” Autophagy, vol. 4, no. 6, pp. 770–782, 2008. View at Google Scholar · View at Scopus
  115. C. T. Chu, J. Zhu, and R. Dagda, “Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death,” Autophagy, vol. 3, no. 6, pp. 663–666, 2007. View at Google Scholar · View at Scopus