Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 463756, 9 pages
http://dx.doi.org/10.1155/2012/463756
Review Article

Redox Regulation of Protein Function via Cysteine S-Nitrosylation and Its Relevance to Neurodegenerative Diseases

Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA

Received 13 April 2012; Accepted 17 July 2012

Academic Editor: Pier Giorgio Mastroberardino

Copyright © 2012 Mohd Waseem Akhtar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Finkel, “Signal transduction by reactive oxygen species,” Journal of Cell Biology, vol. 194, no. 1, pp. 7–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Imlay, “Pathways of oxidative damage,” Annual Review of Microbiology, vol. 57, pp. 395–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Fourquet, R. Guerois, D. Biard, and M. B. Toledano, “Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation,” Journal of Biological Chemistry, vol. 285, no. 11, pp. 8463–8471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. L. Groeger and B. A. Freeman, “Signaling actions of electrophiles: anti-inflammatory therapeutic candidates,” Molecular Interventions, vol. 10, no. 1, pp. 39–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Akaike, S. Fujii, T. Sawa, and H. Ihara, “Cell signaling mediated by nitrated cyclic guanine nucleotide,” Nitric Oxide, vol. 23, no. 3, pp. 166–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Satoh and S. A. Lipton, “Redox regulation of neuronal survival mediated by electrophilic compounds,” Trends in Neurosciences, vol. 30, no. 1, pp. 37–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Satoh, S. I. Okamoto, J. Cui et al., “Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophillic phase II inducers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 768–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Satoh, K. Kosaka, K. Itoh et al., “Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1,” Journal of Neurochemistry, vol. 104, no. 4, pp. 1116–1131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Kraft, D. A. Johnson, and J. A. Johnson, “Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult,” Journal of Neuroscience, vol. 24, no. 5, pp. 1101–1112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. I. Morimoto, “Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging,” Genes and Development, vol. 22, no. 11, pp. 1427–1438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Bukau, J. Weissman, and A. Horwich, “Molecular chaperones and protein quality control,” Cell, vol. 125, no. 3, pp. 443–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Martínez-Ruiz, S. Cadenas, and S. Lamas, “Nitric oxide signaling: classical, less classical, and nonclassical mechanisms,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 17–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Forstermann, H. H. H. W. Schmidt, J. S. Pollock et al., “Isoforms of nitric oxide synthase. Characterization and purification from different cell types,” Biochemical Pharmacology, vol. 42, no. 10, pp. 1849–1857, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Steinert, T. Chernova, and I. D. Forsythe, “Nitric oxide signaling in brain function, dysfunction, and dementia,” Neuroscientist, vol. 16, no. 4, pp. 435–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Sattler, Z. Xiong, W. Y. Lu, M. Hafner, J. F. MacDonald, and M. Tymianski, “Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein,” Science, vol. 284, no. 5421, pp. 1845–1848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Russwurm and D. Koesling, “NO activation of guanylyl cyclase,” EMBO Journal, vol. 23, no. 22, pp. 4443–4450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Hofmann, “The biology of cyclic GMP-dependent protein kinases,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Francis, J. L. Busch, and J. D. Corbin, “cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action,” Pharmacological Reviews, vol. 62, no. 3, pp. 525–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Lipton, Y. B. Choi, Z. H. Pan et al., “A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds,” Nature, vol. 364, no. 6438, pp. 626–632, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. V. L. Dawson, T. M. Dawson, E. D. London, D. S. Bredt, and S. H. Snyder, “Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 14, pp. 6368–6371, 1991. View at Google Scholar · View at Scopus
  21. E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera, and S. A. Lipton, “Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7162–7166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Sen, M. R. Hara, A. S. Ahmad et al., “GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation,” Neuron, vol. 63, no. 1, pp. 81–91, 2009. View at Google Scholar · View at Scopus
  23. Y. B. Choi, L. Tenneti, D. A. Le et al., “Molecular basis of NMDA receptor-coupled ion channel modulation by S- nitrosylation,” Nature Neuroscience, vol. 3, no. 1, pp. 15–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, “Protein S-nitrosylation: purview and parameters,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 150–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Qu, T. Nakamura, G. Cao et al., “S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 34, pp. 14330–14335, 2011. View at Publisher · View at Google Scholar
  26. T. Uehara, T. Nakamura, D. Yao et al., “S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration,” Nature, vol. 441, no. 7092, pp. 513–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Benhar, M. T. Forrester, and J. S. Stamler, “Protein denitrosylation: enzymatic mechanisms and cellular functions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 10, pp. 721–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. M. LaFerla, K. N. Green, and S. Oddo, “Intracellular amyloid-β in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 8, no. 7, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. D. Terry, E. Masliah, D. P. Salmon et al., “Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment,” Annals of Neurology, vol. 30, no. 4, pp. 572–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  32. K. B. Beckman and B. N. Ames, “The free radical theory of aging matures,” Physiological Reviews, vol. 78, no. 2, pp. 547–581, 1998. View at Google Scholar · View at Scopus
  33. L. M. Sayre, G. Perry, and M. A. Smith, “Oxidative stress and neurotoxicity,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 172–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. Lyles and H. F. Gilbert, “Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: pre-steady-state kinetics and the utilization of the oxidizing equivalents of the isomerase,” Biochemistry, vol. 30, no. 3, pp. 619–625, 1991. View at Google Scholar · View at Scopus
  35. M. M. Lyles and H. F. Gilbert, “Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer,” Biochemistry, vol. 30, no. 3, pp. 613–619, 1991. View at Google Scholar · View at Scopus
  36. R. J. Kaufman, “Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls,” Genes and Development, vol. 13, no. 10, pp. 1211–1233, 1999. View at Google Scholar · View at Scopus
  37. W. Scheper and J. J. M. Hoozemans, “Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy,” Current Medicinal Chemistry, vol. 16, no. 5, pp. 615–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. M. Doyle, D. Kennedy, A. M. Gorman et al., “Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders,” Journal of Cellular and Molecular Medicine, vol. 15, no. 10, pp. 2025–2039, 2011. View at Publisher · View at Google Scholar
  39. H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human Molecular Genetics, vol. 18, no. 2, pp. R169–R176, 2009. View at Google Scholar · View at Scopus
  40. S. A. Detmer and D. C. Chan, “Functions and dysfunctions of mitochondrial dynamics,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 870–879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Okamoto and J. M. Shaw, “Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes,” Annual Review of Genetics, vol. 39, pp. 503–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. D. H. Cho, T. Nakamura, J. Fang et al., “β-Amyloid-related mitochondrial fission and neuronal injury,” Science, vol. 324, no. 5923, pp. 102–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Frautschy and G. M. Cole, “Why pleiotropic interventions are needed for alzheimer's disease,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 392–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. G. N. Patrick, L. Zukerberg, M. Nikolic, S. De La Monte, P. Dikkes, and L. H. Tsai, “Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration,” Nature, vol. 402, no. 6762, pp. 615–622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Ohshima, J. M. Ward, C. G. Huh et al., “Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11173–11178, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Xie, K. Sanada, B. A. Samuels, H. Shih, and L. H. Tsai, “Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration,” Cell, vol. 114, no. 4, pp. 469–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Kim, J. Y. Sung, I. Ceglia et al., “Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology,” Nature, vol. 442, no. 7104, pp. 814–817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Bertram, C. M. Lill, and R. E. Tanzi, “The genetics of alzheimer disease: back to the future,” Neuron, vol. 68, no. 2, pp. 270–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. J. Abrams, A. Farooq, and G. Wang, “S-nitrosylation of ApoE in Alzheimer's disease,” Biochemistry, vol. 50, no. 17, pp. 3405–3407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Mayeux, K. Marder, and L. J. Cote, “The frequency of idiopathic Parkinson's disease by age, ethnic group, and sex in northern Manhattan,” American Journal of Epidemiology, vol. 142, no. 8, pp. 820–827, 1988–1993. View at Google Scholar · View at Scopus
  51. B. I. Giasson and V. M. Y. Lee, “Are ubiquitination pathways central to Parkinson's disease?” Cell, vol. 114, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Jenner, “Oxidative stress in Parkinson's disease,” Annals of Neurology, vol. 53, supplement 3, pp. S26–S36, 2003. View at Publisher · View at Google Scholar
  53. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson's disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. J. W. Langston, “Parkinson's disease: current and future challenges,” NeuroToxicology, vol. 23, no. 4-5, pp. 443–450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. L. Miller, M. James-Kracke, G. Y. Sun, and A. Y. Sun, “Oxidative and inflammatory pathways in parkinson's disease,” Neurochemical Research, vol. 34, no. 1, pp. 55–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Kitada, S. Asakawa, N. Hattori et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism,” Nature, vol. 392, no. 6676, pp. 605–608, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. C. B. Lucking, A. Durr, V. Bonifati et al., “Association between early-onset Parkinson's disease and mutations in the parkin gene,” The New England Journal of Medicine, vol. 342, no. 21, pp. 1560–1567, 2000. View at Publisher · View at Google Scholar
  58. S. A. Oliveira, W. K. Scott, E. R. Martin et al., “Parkin mutations and susceptibility alleles in late-onset Parkinson's disease,” Annals of Neurology, vol. 53, no. 5, pp. 624–629, 2003. View at Publisher · View at Google Scholar
  59. H. Shimura, N. Hattori, S. I. Kubo et al., “Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase,” Nature Genetics, vol. 25, no. 3, pp. 302–305, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Jiang, Y. Ren, J. Zhao, and J. Feng, “Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis,” Human Molecular Genetics, vol. 13, no. 16, pp. 1745–1754, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. M. Dawson and V. L. Dawson, “Molecular pathways of neurodegeneration in Parkinson's disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. B. Feany and L. J. Pallanck, “Parkin: a multipurpose neuroprotective agent?” Neuron, vol. 38, no. 1, pp. 13–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Von Coelln, V. L. Dawson, and T. M. Dawson, “Parkin-associated Parkinson's disease,” Cell and Tissue Research, vol. 318, no. 1, pp. 175–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. N. F. Bence, R. M. Sampat, and R. R. Kopito, “Impairment of the ubiquitin-proteasome system by protein aggregation,” Science, vol. 292, no. 5521, pp. 1552–1555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Masliah, E. Rockenstein, I. Veinbergs et al., “Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders,” Science, vol. 287, no. 5456, pp. 1265–1269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. C. A. da Costa, C. Sunyach, E. Giaime et al., “Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease,” Nature Cell Biology, vol. 11, no. 11, pp. 1370–1375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Alves da Costa and F. Checler, “Apoptosis in Parkinson's disease: is p53 the missing link between genetic and sporadic Parkinsonism?” Cellular Signalling, vol. 23, no. 6, pp. 963–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Yao, Z. Gu, T. Nakamura et al., “Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10810–10814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. K. K. K. Chung, B. Thomas, X. Li et al., “S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function,” Science, vol. 304, no. 5675, pp. 1328–1331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. G. R. Sue, Z. C. Ho, and K. Kim, “Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling,” Free Radical Biology and Medicine, vol. 38, no. 12, pp. 1543–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. S. G. Rhee, S. W. Kang, W. Jeong, T. S. Chang, K. S. Yang, and H. A. Woo, “Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins,” Current Opinion in Cell Biology, vol. 17, no. 2, pp. 183–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. A. Wood, E. Schröder, J. R. Harris, and L. B. Poole, “Structure, mechanism and regulation of peroxiredoxins,” Trends in Biochemical Sciences, vol. 28, no. 1, pp. 32–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. S. H. Kim, M. Fountoulakis, N. Cairns, and G. Lubec, “Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down Syndrome,” Journal of Neural Transmission, Supplement, no. 61, pp. 223–235, 2001. View at Google Scholar · View at Scopus
  74. K. Krapfenbauer, E. Engidawork, N. Cairns, M. Fountoulakis, and G. Lubec, “Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders,” Brain Research, vol. 967, no. 1-2, pp. 152–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Fang, T. Nakamura, D. H. Cho, Z. Gu, and S. A. Lipton, “S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18742–18747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. C. Romero-Puertas, M. Laxa, A. Mattè et al., “S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration,” Plant Cell, vol. 19, no. 12, pp. 4120–4130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. B. P. Eckelman, G. S. Salvesen, and F. L. Scott, “Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family,” EMBO Reports, vol. 7, no. 10, pp. 988–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. S. Salvesen and C. S. Duckett, “IAP proteins: blocking the road to death's door,” Nature Reviews Molecular Cell Biology, vol. 3, no. 6, pp. 401–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Fuentes-Prior and G. S. Salvesen, “The protein structures that shape caspase activity, specificity, activation and inhibition,” Biochemical Journal, vol. 384, no. 2, pp. 201–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. MacFarlane, W. Merrison, S. B. Bratton, and G. M. Cohen, “Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 36611–36616, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. A. J. Schile, M. García-Fernández, and H. Steller, “Regulation of apoptosis by XIAP ubiquitin-ligase activity,” Genes and Development, vol. 22, no. 16, pp. 2256–2266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Suzuki, Y. Nakabayashi, and R. Takahashi, “Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8662–8667, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. D. L. Vaux and J. Silke, “IAPs, RINGs and ubiquitylation,” Nature Reviews Molecular Cell Biology, vol. 6, no. 4, pp. 287–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Yang, S. Fang, J. P. Jensen, A. M. Weissman, and J. D. Ashwell, “Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli,” Science, vol. 288, no. 5467, pp. 874–877, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Nakamura, L. Wang, C. C. L. Wong et al., “Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death,” Molecular Cell, vol. 39, no. 2, pp. 184–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. A. H. K. Tsang, Y. I. L. Lee, H. S. Ko et al., “S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4900–4905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. R. Hara, N. Agrawal, S. F. Kim et al., “S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding,” Nature Cell Biology, vol. 7, no. 7, pp. 665–674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Q. Wang and R. Takahashi, “Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease,” Antioxidants and Redox Signaling, vol. 9, no. 5, pp. 553–561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. V. Bonifati, P. Rizzu, M. J. Van Baren et al., “Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism,” Science, vol. 299, no. 5604, pp. 256–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Mitsumoto, Y. Nakagawa, A. Takeuchi, K. Okawa, A. Iwamatsu, and Y. Takanezawa, “Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat,” Free Radical Research, vol. 35, no. 3, pp. 301–310, 2001. View at Google Scholar · View at Scopus
  91. T. Taira, Y. Saito, T. Niki, S. M. M. Iguchi-Ariga, K. Takahashi, and H. Ariga, “DJ-1 has a role in antioxidative stress to prevent cell death,” EMBO Reports, vol. 5, no. 2, pp. 213–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Yokota, K. Sugawara, K. Ito, R. Takahashi, H. Ariga, and H. Mizusawa, “Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition,” Biochemical and Biophysical Research Communications, vol. 312, no. 4, pp. 1342–1348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Meulener, A. J. Whitworth, C. E. Armstrong-Gold et al., “Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease,” Current Biology, vol. 15, no. 17, pp. 1572–1577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. F. M. Menzies, S. C. Yenisetti, and K. T. Min, “Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress,” Current Biology, vol. 15, no. 17, pp. 1578–1582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Yang, S. Gehrke, M. E. Haque et al., “Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13670–13675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Park, Y. K. Sung, G. H. Cha, B. L. Sung, S. Kim, and J. Chung, “Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction,” Gene, vol. 361, no. 1-2, pp. 133–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. R. H. Kim, P. D. Smith, H. Aleyasin et al., “Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyrindine (MPTP) and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5215–5220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Ito, H. Ariga, Y. Nakagawa, and T. Iwatsubo, “Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1,” Biochemical and Biophysical Research Communications, vol. 339, no. 2, pp. 667–672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Seth and J. S. Stamler, “The SNO-proteome: causation and classifications,” Current Opinion in Chemical Biology, vol. 15, no. 1, pp. 129–136, 2011. View at Publisher · View at Google Scholar · View at Scopus