Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 657423, 11 pages
http://dx.doi.org/10.1155/2012/657423
Research Article

PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

1Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
2Zoologisch Institute, Ludwig-Maximilians Universitat, 80333 München, Germany
3Central Research Laboratory, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
4Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan

Received 12 June 2011; Revised 1 October 2011; Accepted 1 October 2011

Academic Editor: Andre Van Wijnen

Copyright © 2012 Aiko Amagai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Filosa and R. E. Dengler, “Ultrastructure of macrocyst formation in the cellular slime mold, Dictyostelium mucoroides: extensive phagocytosis of amoebae by a specialized cell,” Developmental Biology, vol. 29, no. 1, pp. 1–16, 1972. View at Google Scholar
  2. A. W. Nickerson and K. B. Raper, “Macrocysts in the life cycle of the Dictyosteliaceae. II. Germination of the macrocyst,” The American Journal of Botany, vol. 60, pp. 247–253, 1973. View at Google Scholar
  3. D. Francis, “Macrocyst genetics in Polysphondylium pallidum, a cellular slime mould,” Journal of General Microbiology, vol. 89, no. 2, pp. 310–318, 1975. View at Google Scholar
  4. M. A. Wallace and K. B. Raper, “Genetic exchanges in the macrocysts of Dictyostelium discoideum,” Journal of General Microbiology, vol. 113, no. 2, pp. 327–337, 1979. View at Google Scholar
  5. A. Amagai, “Induction of zygote formation by ethylene during the sexual development of the cellular slime mold Dictyostelium mucoroides,” Differentiation, vol. 41, no. 3, pp. 176–183, 1989. View at Publisher · View at Google Scholar
  6. T. Suzuki, A. Amagai, and Y. Maeda, “Cyclic AMP and Ca2+ as regulators of zygote formation in the cellular slime mold Dictyostelium mucoroides,” Differentiation, vol. 49, no. 3, pp. 127–132, 1992. View at Publisher · View at Google Scholar
  7. A. H. Chagla, K. E. Lewis, and D. H. O'Day, “Ca2+ and cell fusion during sexual development in liquid cultures of Dictyostelium discoideum,” Experimental Cell Research, vol. 126, no. 2, pp. 501–505, 1980. View at Google Scholar
  8. S. P. Szabo, D. H. O'Day, and A. H. Chagla, “Cell fusion, nuclear fusion, and zygote differentiation during sexual development of Dictyostelium discoideum,” Developmental Biology, vol. 90, no. 2, pp. 375–382, 1982. View at Google Scholar
  9. K. E. Gunther, H. Ramkisson, M. A. Lydan, and D. H. O’Day, “Fertilization in Dictyostelium: pharmacological analyses and the presence of a substrate protein suggest protein kinase C is essential for gamete fusion,” Expermental Cell Research, vol. 220, pp. 325–331, 1995. View at Google Scholar
  10. A. Amagai, “Ethylene as a potent inducer of sexual development,” Development Growth and Differentiation, vol. 53, pp. 617–623, 2011. View at Google Scholar
  11. S. Kawai, Y. Maeda, and A. Amagai, “Promotion of zygote formation by protein kinase inhibitors during the sexual development of Dictyostelium mucoroides,” Development Growth and Differentiation, vol. 35, no. 5, pp. 601–607, 1993. View at Google Scholar
  12. A. Amagai, “A novel function of ethylene,” Gene Regulation and Systems Biology, vol. 3, pp. 21–30, 2009. View at Google Scholar
  13. M. J. Wakelam, “The fusion of myoblasts,” Biochemical Journal, vol. 228, no. 1, pp. 1–12, 1985. View at Google Scholar
  14. K. M. Jansen and G. K. Pavlath, “Molecular control of mammalian myoblast fusion,” Methods in Molecular Biology, vol. 475, pp. 115–133, 2008. View at Publisher · View at Google Scholar · View at PubMed
  15. A. Shainberg, G. Yagil, and D. Yaffe, “Control of myogenesis in vitro by Ca2+ concentration in nutritional medium,” Experimental Cell Research, vol. 58, no. 1, pp. 163–167, 1969. View at Google Scholar
  16. B. Paterson and R. C. Strohman, “Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle,” Developmental Biology, vol. 29, no. 2, pp. 113–138, 1972. View at Google Scholar
  17. J. D. David, C. R. Faser, and G. P. Perrot, “Role of protein kinase C in chick embryo skeletal myoblast fusion,” Developmental Biology, vol. 139, no. 1, pp. 89–99, 1990. View at Google Scholar
  18. J. D. David and C. A. Higginbotham, “Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, cAMP, and calcium influx,” Developmental Biology, vol. 82, no. 2, pp. 308–316, 1981. View at Google Scholar
  19. J. D. David, W. M. See, and C. A. Higginbotham, “Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union,” Developmental Biology, vol. 82, no. 2, pp. 297–307, 1981. View at Google Scholar
  20. A. Amagai, “Involvement of a novel gene, zyg1, in zygote formation of Dictyostelium mucoroides,” Journal of Muscle Research and Cell Motility, vol. 23, no. 7-8, pp. 867–874, 2002. View at Publisher · View at Google Scholar
  21. A. Amagai, S. S. Soramoto, S. H. Saito, and Y. Maeda, “Ethylene induces zygote formation through an enhanced expression of zyg1 in Dictyostelium mucoroides,” Experimental Cell Research, vol. 313, no. 11, pp. 2493–2503, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Luria, T. Tennenbaum, Y. S. Qing, S. Rubinstein, and H. Breitbart, “Differential localization of conventional protein kinase C isoforms during mouse oocyte development,” Biology of Reproduction, vol. 62, no. 6, pp. 1564–1570, 2000. View at Google Scholar · View at Scopus
  23. J. T. Bonner, “Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum,” Journal of Experimental Zoology, vol. 106, pp. 1–26, 1947. View at Google Scholar
  24. N. Yang, O. Higuchi, K. Ohashi et al., “Cofflin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization,” Nature, vol. 393, no. 6687, pp. 809–812, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. P. K. Howard, K. G. Ahern, and R. A. Firtel, “Establishment of a transient expression system for Dictyostelium discoideum,” Nucleic Acids Research, vol. 16, no. 6, pp. 2613–2623, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Nishizuka, “Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C,” Science, vol. 258, no. 5082, pp. 607–614, 1992. View at Google Scholar · View at Scopus
  27. H. Hug and T. F. Sarre, “Protein kinase C isoenzymes: divergence in signal transduction?” Biochemical Journal, vol. 291, no. 2, pp. 329–343, 1993. View at Google Scholar · View at Scopus
  28. J. L. Knopf, M. Lee, L. A. Kritz, C. R. Loomis, R. M. Hewick, and R. M. Bell, “Cloning and expression of multiple protein kinase C cDNAs,” Cell, vol. 46, pp. 491–502, 1986. View at Google Scholar
  29. F. J. Johannes, J. Prestle, S. Eis, P. Oberhagemann, and K. Pfizenmaier, “PKCu is a novel, atypical member of the protein kinase C family,” Journal of Biological Chemistry, vol. 269, no. 8, pp. 6140–6148, 1994. View at Google Scholar · View at Scopus
  30. Y. Ono, T. Fujii, K. Ogita, U. Kikkawa, K. Igarashi, and Y. Nishizuka, “The structure, expression, and properties of additional members of the protein kinase C family,” Journal of Biological Chemistry, vol. 263, no. 14, pp. 6927–6932, 1988. View at Google Scholar · View at Scopus
  31. S. I. Osada, K. Mizuno, T. C. Saido et al., “A phorbol ester receptor/protein kinase, nPKC eta, a new member of the protein kinase C family predominantly expressed in lung and skin,” Journal of Biological Chemistry, vol. 265, no. 36, pp. 22434–22440, 1990. View at Google Scholar · View at Scopus
  32. S. I. Osada, K. Mizuno, T. C. Saido, K. Suzuki, T. Kuroki, and S. Ohno, “A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle,” Molecular and Cellular Biology, vol. 12, no. 9, pp. 3930–3938, 1992. View at Google Scholar · View at Scopus
  33. Y. Ono, T. Fujii, K. Ogita, U. Kikkawa, K. Igarashi, and Y. Nishizuka, “Protein kinase C ζ subspecies from rat brain: its structure, expression, and properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 9, pp. 3099–3103, 1989. View at Google Scholar · View at Scopus
  34. L. A. Selbie, C. Schmitz-Peiffer, Y. Sheng, and T. J. Biden, “Molecular cloning and characterization of PKC2, an atypical isoform of protein kinase C derived from insulin-secreting cells,” Journal of Biological Chemistry, vol. 268, no. 32, pp. 24296–24302, 1993. View at Google Scholar · View at Scopus