Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012 (2012), Article ID 683897, 16 pages
http://dx.doi.org/10.1155/2012/683897
Review Article

Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

Unit of Radiation Biology and Human Health, ENEA-Casaccia, Rome 00123, Italy

Received 13 April 2012; Revised 19 June 2012; Accepted 19 June 2012

Academic Editor: Giuseppe Filomeni

Copyright © 2012 Claudia Consales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Adey, “Tissue interactions with nonionizing electromagnetic fields,” Physiological Reviews, vol. 61, no. 2, pp. 435–514, 1981. View at Google Scholar · View at Scopus
  2. A. Lacy-Hulbert, J. C. Metcalfe, and R. Hesketh, “Biological responses to electromagnetic fields,” The FASEB Journal, vol. 12, no. 6, pp. 395–420, 1998. View at Google Scholar · View at Scopus
  3. J. Juutilainen, P. Matilainen, S. Saarikoski, E. Läärä, and S. Suonio, “Early pregnancy loss and exposure to 50-Hz magnetic fields,” Bioelectromagnetics, vol. 14, no. 3, pp. 229–236, 1993. View at Google Scholar · View at Scopus
  4. International Agency for Research on Cancer-(IARC), “Non-ionizing radiation Part I: static and extremely low frequency (ELF) electric and magnetic fields,” Monographs, vol. 80, 429 pages, 2002. View at Google Scholar
  5. C. Y. Li and F. C. Sung, “Association between occupational exposure to power frequency electromagnetic fields and amyotrophic lateral sclerosis: a review,” American Journal of Industrial Medicine, vol. 43, no. 2, pp. 212–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. HAYNAL and F. REGLI, “Amyotrophic lateral sclerosis associated with accumulated electric injury,” Confinia Neurologica, vol. 24, pp. 189–198, 1964. View at Google Scholar · View at Scopus
  7. N. Wertheimer and E. Leeper, “Original contributions. Electrical wiring configurations and childhood cancer,” American Journal of Epidemiology, vol. 109, no. 3, pp. 273–284, 1979. View at Google Scholar · View at Scopus
  8. D. P. Loomis and D. A. Savitz, “Mortality from brain cancer and leukaemia among electrical workers,” British Journal of Industrial Medicine, vol. 47, no. 9, pp. 633–638, 1990. View at Google Scholar · View at Scopus
  9. Z. Davanipour, C. C. Tseng, P. J. Lee, and E. Sobel, “A case-control study of occupational magnetic field exposure and Alzheimer's disease: results from the California Alzheimer's Disease Diagnosis and Treatment Centers,” BMC Neurology, vol. 7, article 13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. WHO, “Electromagnetic fields and public health. Exposure to extremely low frequency fields,” Fact Sheet no. 322, 2007. View at Google Scholar
  11. WHO (Environmental Health Criteria), Extremely Low Frequency Fields, vol. 35, WHO, Geneva, Switzerland, 1984.
  12. C. Polk and E. Postov, CRC Handbook of Biological Effects of Electromagnetic Fields, CRC Press, Boca Raton, Fla, USA, 1996.
  13. A. Ahlbom, U. Bergqvist, J. H. Bernhardt et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields,” Health Physics, vol. 74, no. 4, pp. 494–521, 1998. View at Google Scholar · View at Scopus
  14. ICNIRP (International Commission on Non Ionizing Radiation Protection), “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz TO 100 kHz),” Health Physics, vol. 99, no. 6, pp. 818–836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Friedman, S. Kraus, Y. Hauptman, Y. Schiff, and R. Seger, “Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies,” Biochemical Journal, vol. 405, no. 3, pp. 559–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Caraglia, M. Marra, F. Mancinelli et al., “Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells,” Journal of Cellular Physiology, vol. 204, no. 2, pp. 539–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. W. Li, K. Yao, H. Y. Jin, L. X. Sun, D. Q. Lu, and Y. B. Yu, “Proteomic analysis of human lens epithelial cells exposed to microwaves,” Japanese Journal of Ophthalmology, vol. 51, no. 6, pp. 412–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Oktem, F. Ozguner, H. Mollaoglu, A. Koyu, and E. Uz, “Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin,” Archives of Medical Research, vol. 36, no. 4, pp. 350–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Kovacic and R. Somanathan, “Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects,” Journal of Receptors and Signal Transduction, vol. 30, no. 4, pp. 214–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Repacholi and B. Greenebaum, “Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs,” Bioelectromagnetics, vol. 20, no. 3, pp. 133–160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Jajte, J. Grzegorczyk, M. Zmysacute, and E. Rajkowska, “Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes,” Bioelectrochemistry, vol. 57, no. 2, pp. 107–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Z. Akdag, M. H. Bilgin, S. Dasdag, and C. Tumer, “Alteration of nitric oxide production in rats exposed to a prolonged, extremely low-frequency magnetic field,” Electromagnetic Biology and Medicine, vol. 26, no. 2, pp. 99–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. C. Scaiano, N. Mohtat, F. L. Cozens, J. McLean, and A. Thansandote, “Application of the radical pair mechanism to free radicals in organized systems: can the effects of 60 Hz be predicted from studies under static fields?” Bioelectromagnetics, vol. 15, no. 6, pp. 549–554, 1994. View at Google Scholar · View at Scopus
  24. M. Simkó, “Cell type specific redox status is responsible for diverse electromagnetic field effects,” Current Medicinal Chemistry, vol. 14, no. 10, pp. 1141–1152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Harakawa, N. Inoue, T. Hori et al., “Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats,” Bioelectromagnetics, vol. 26, no. 7, pp. 589–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Kong and C. L. G. Lin, “Oxidative damage to RNA: mechanisms, consequences, and diseases,” Cellular and Molecular Life Sciences, vol. 67, no. 11, pp. 1817–1829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Rollwitz, M. Lupke, and M. Simkó, “Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages,” Biochimica et Biophysica Acta—General Subjects, vol. 1674, no. 3, pp. 231–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Simkó and M. O. Mattsson, “Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation,” Journal of Cellular Biochemistry, vol. 93, no. 1, pp. 83–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Roy, Y. Noda, V. Eckert et al., “The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field,” FEBS Letters, vol. 376, no. 3, pp. 164–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Simkó, S. Droste, R. Kriehuber, and D. G. Weiss, “Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields,” European Journal of Cell Biology, vol. 80, no. 8, pp. 562–566, 2001. View at Google Scholar · View at Scopus
  32. S. Thun-Battersby, M. Mevissen, and W. Löscher, “Exposure of Sprague-Dawley rats to a 50-hertz, 100-μTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12- dimethylbenz[a]-anthracene model of breast cancer,” Cancer Research, vol. 59, no. 15, pp. 3627–3633, 1999. View at Google Scholar · View at Scopus
  33. L. S. Caplan, E. R. Schoenfeld, E. S. O'Leary, and M. C. Leske, “Breast cancer and electromagnetic fields—a Review,” Annals of Epidemiology, vol. 10, no. 1, pp. 31–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Katsir and A. H. Parola, “Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers,” Biochemical and Biophysical Research Communications, vol. 252, no. 3, pp. 753–756, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. K. R. Foster and R. Glaser, “Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines,” Health Physics, vol. 92, no. 6, pp. 609–620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Gaestel, “Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges,” Biological Reviews, vol. 85, no. 3, pp. 489–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. K. Irmak, E. Fadillioǧlu, M. Güleç, H. Erdoǧan, M. Yaǧmurca, and O. Akyol, “Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits,” Cell Biochemistry and Function, vol. 20, no. 4, pp. 279–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Stam, “Electromagnetic fields and the blood-brain barrier,” Brain Research Reviews, vol. 65, no. 1, pp. 80–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Zmyślony, P. Politanski, E. Rajkowska, W. Szymczak, and J. Jajte, “Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions,” Bioelectromagnetics, vol. 25, no. 5, pp. 324–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Ozgur, G. Gler, and N. Seyhan, “Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants n-acetyl cysteine and epigallocatechin-gallate,” International Journal of Radiation Biology, vol. 86, no. 11, pp. 935–945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Lantow, M. Lupke, J. Frahm, M. O. Mattsson, N. Kuster, and M. Simko, “ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes,” Radiation and Environmental Biophysics, vol. 45, no. 1, pp. 55–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Lantow, J. Schuderer, C. Hartwig, and M. Simkó, “Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation,” Radiation Research, vol. 165, no. 1, pp. 88–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Q. Huang, M. S. Lee, E. H. Oh et al., “Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells,” International Journal of Radiation Biology, vol. 84, no. 11, pp. 909–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Halliwell, J. M. C. Gutteridge, A. C. Andorn, R. S. Britton, and B. R. Bacon, “Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals (multiple letters),” Journal of Neurochemistry, vol. 69, no. 3, pp. 1330–1331, 1997. View at Google Scholar · View at Scopus
  45. M. Naziroǧlu, “New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose,” Neurochemical Research, vol. 32, no. 11, pp. 1990–2001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Özmen, M. Naziroǧlu, H. A. Alici, F. Şahin, M. Cengiz, and I. Eren, “Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress,” Neurochemical Research, vol. 32, no. 1, pp. 19–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. K. Adair, “Effects of very weak magnetic fields on radical pair reformation,” Bioelectromagnetics, vol. 20, no. 4, pp. 255–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. A. R. O'Dea, A. F. Curtis, N. J. B. Green, C. R. Tinunel, and P. J. Hore, “Influence of dipolar interactions on radical pair recombination reactions subject to weak magnetic fields,” Journal of Physical Chemistry A, vol. 109, no. 5, pp. 869–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. J. Hoff, “Magnetic field effects on photosynthetic reactions,” Quarterly Reviews of Biophysics, vol. 14, no. 4, pp. 599–665, 1981. View at Google Scholar · View at Scopus
  50. C. T. Rodgers and P. J. Hore, “Chemical magnetoreception in birds: the radical pair mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 2, pp. 353–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Di Loreto, S. Falone, V. Caracciolo et al., “Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 334–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Y. Chu, J. H. Lee, Y. S. Nam et al., “Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum,” General Physiology and Biophysics, vol. 30, no. 4, pp. 415–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Ciejka, P. Kleniewska, A. Goraca, and B. Skibska, “Effects of extremely low frequency magnetic field on oxidative balance in brain of rats,” Journal of Physiology and Pharmacology, vol. 62, no. 6, pp. 657–661, 2011. View at Google Scholar · View at Scopus
  54. A. Jelenković, B. Janać, V. Pešić, D. M. Jovanović, I. Vasiljević, and Z. Prolić, “Effects of extremely low-frequency magnetic field in the brain of rats,” Brain Research Bulletin, vol. 68, no. 5, pp. 355–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. S. Bediz, A. K. Baltaci, R. Mogulkoc, and E. Öztekin, “Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain,” Tohoku Journal of Experimental Medicine, vol. 208, no. 2, pp. 133–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. B. C. Lee, H. M. Johng, J. K. Lim et al., “Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study,” Journal of Photochemistry and Photobiology B, vol. 73, no. 1-2, pp. 43–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Z. Akdag, S. Dasdag, E. Ulukaya, A. K. Uzunlar, M. A. Kurt, and A. TaşkIn, “Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain,” Biological Trace Element Research, vol. 138, no. 1–3, pp. 238–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Martínez-Sámano, P. V. Torres-Durán, M. A. Juárez-Oropeza, and L. Verdugo-Díaz, “Effect of acute extremely low frequency electromagnetic field exposure on the antioxidant status and lipid levels in rat brain,” Archives of Medical Research, vol. 43, no. 3, pp. 183–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. K. C. Kregel and H. J. Zhang, “An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations,” American Journal of Physiology, vol. 292, no. 1, pp. R18–R36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Falone, A. Mirabilio, M. C. Carbone et al., “Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 12, pp. 2762–2770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Kabuto, I. Yokoi, N. Ogawa, A. Mori, and R. P. Liburdy, “Effects of magnetic fields on the accumulation of thiobarbituric acid reactive substances induced by iron salt and H2O2 in mouse brain homogenates or phosphotidylcholine,” Pathophysiology, vol. 7, no. 4, pp. 283–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. K. A. Hossmann and D. M. Hermann, “Effects of electromagnetic radiation of mobile phones on the central nervous system,” Bioelectromagnetics, vol. 24, no. 1, pp. 49–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Ilhan, A. Gurel, F. Armutcu et al., “Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain,” Clinica Chimica Acta, vol. 340, no. 1-2, pp. 153–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Meral, H. Mert, N. Mert et al., “Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs,” Brain Research, vol. 1169, no. 1, pp. 120–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Ammari, A. Lecomte, M. Sakly, H. Abdelmelek, and R. de-Seze, “Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity,” Toxicology, vol. 250, no. 1, pp. 70–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Xu, Z. Zhou, L. Zhang et al., “Exposure to 1800MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons,” Brain Research, vol. 1311, pp. 189–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Höytö, J. Luukkonen, J. Juutilainen, and J. Naarala, “Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants,” Radiation Research, vol. 170, no. 2, pp. 235–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. C. Benz and C. Yau, “Ageing, oxidative stress and cancer: paradigms in parallax,” Nature Reviews Cancer, vol. 8, no. 11, pp. 875–879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar · View at Scopus
  71. Shi Du Yan, Shi Fang Yan, X. Chen et al., “Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide,” Nature Medicine, vol. 1, no. 7, pp. 693–699, 1995. View at Google Scholar · View at Scopus
  72. A. Nunomura, G. Perry, M. A. Pappolla et al., “RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease,” Journal of Neuroscience, vol. 19, no. 6, pp. 1959–1964, 1999. View at Google Scholar · View at Scopus
  73. A. Ward, S. Crean, C. J. Mercaldi et al., “Prevalence of Apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with alzheimer's disease: a systematic review and meta-analysis,” Neuroepidemiology, vol. 38, no. 1, pp. 1–17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Santibañez, F. Bolumar, and A. M. García, “Occupational risk factors in Alzheimer's disease: a review assessing the quality of published epidemiological studies,” Occupational and Environmental Medicine, vol. 64, no. 11, pp. 723–732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Sobel, J. Louhija, R. Sulkava et al., “Lack of association of apolipoprotein E allele ε4 with late-onset Alzheimer's disease among Finnish centenarians,” Neurology, vol. 45, no. 5, pp. 903–907, 1995. View at Google Scholar · View at Scopus
  76. A. M. García, A. Sisternas, and S. P. Hoyos, “Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis,” International Journal of Epidemiology, vol. 37, no. 2, pp. 329–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Röösli, “Commentary: epidemiological research on extremely low frequency magnetic fields and Alzheimer's disease—biased or informative?” International Journal of Epidemiology, vol. 37, no. 2, pp. 341–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. C. L. Masters and K. Beyreuther, “Science, medicine, and the future. Alzheimers disease,” BMJ, vol. 316, no. 7129, pp. 446–448, 1998. View at Google Scholar · View at Scopus
  79. D. Josefson, “Foods rich in antioxidants may reduce risk of Alzheimer's disease,” BMJ, vol. 325, article 7, 2002. View at Google Scholar
  80. E. Del Giudice, F. Facchinetti, V. Nofrate et al., “Fifty Hertz electromagnetic field exposure stimulates secretion of β-amyloid peptide in cultured human neuroglioma,” Neuroscience Letters, vol. 418, no. 1, pp. 9–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Sobel and Z. Davanipour, “Electromagnetic field exposure may cause increased production of amyloid beta and eventually lead to Alzheimer's disease,” Neurology, vol. 47, no. 6, pp. 1594–1600, 1996. View at Google Scholar · View at Scopus
  82. G. W. Arendash, J. Sanchez-Ramos, T. Mori et al., “Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's disease mice,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 191–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Dubreuil, T. Jay, and J. M. Edeline, “Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks,” Behavioural Brain Research, vol. 145, no. 1-2, pp. 51–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. G. W. Arendash, T. Mori, M. Dorsey, R. Gonzalez, N. Tajiri, and C. Borlongan, “Electromagnetic treatment to old Alzheimer's mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit,” PLoS One, vol. 7, no. 4, Article ID e35751, 2012. View at Google Scholar
  85. N. Dragicevic, P. C. Bradshaw, M. Mamcarz et al., “Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit?” Neuroscience, vol. 185, pp. 135–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Söderqvist, L. Hardell, M. Carlberg, and K. H. Mild, “Radiofrequency fields, transthyretin, and alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. 599–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Terro, A. Magnaudeix, M. Crochetet et al., “GSM-900MHz at low dose temperature-dependently downregulates α-synuclein in cultured cerebral cells independently of chaperone-mediated-autophagy,” Toxicology, vol. 292, no. 2-3, pp. 136–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. F. P. De Gannes, G. Ruffié, M. Taxile et al., “Amyotrophic Lateral Sclerosis (ALS) and extremely-low frequency (ELF) magnetic fields: a study in the SOD-1 transgenic mouse model,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 370–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Túnez, R. Drucker-Colín, I. Jimena et al., “Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington's disease,” Journal of Neurochemistry, vol. 97, no. 3, pp. 619–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. I. Túnez, P. Montilla, M. D. C. Muñoz, F. J. Medina, and R. Drucker-Colín, “Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes,” Neuroscience Research, vol. 56, no. 1, pp. 91–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. I. Tasset, F. J. Medina, I. Jimena et al., “Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: effects on neurotrophic factors and neuronal density,” Neuroscience, vol. 209, pp. 54–63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. V. G. Khurana, C. Teo, M. Kundi, L. Hardell, and M. Carlberg, “Cell phones and brain tumors: a review including the long-term epidemiologic data,” Surgical Neurology, vol. 72, no. 3, pp. 205–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. M. S. Pollanen, D. W. Dickson, and C. Bergeron, “Pathology and biology of the Lewy body,” Journal of Neuropathology and Experimental Neurology, vol. 52, no. 3, pp. 183–191, 1993. View at Google Scholar · View at Scopus
  94. L. S. Wechsler, H. Checkoway, G. M. Franklin, and L. G. Costa, “A pilot study of occupational and environmental risk factors for Parkinson's disease,” NeuroToxicology, vol. 12, no. 3, pp. 387–392, 1991. View at Google Scholar · View at Scopus
  95. D. A. Savitz, H. Checkoway, and D. P. Loomis, “Magnetic field exposure and neurodegenerative disease mortality among electric utility workers,” Epidemiology, vol. 9, no. 4, pp. 398–404, 1998. View at Google Scholar · View at Scopus
  96. C. Johansen, “Exposure to electromagnetic fields and risk of central nervous system disease in utility workers,” Epidemiology, vol. 11, no. 5, pp. 539–543, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. D. A. Savitz, D. P. Loomis, and C. K. J. Tse, “Electrical occupations and neurodegenerative disease: analysis of U.S. Mortality data,” Archives of Environmental Health, vol. 53, no. 1, pp. 71–74, 1998. View at Google Scholar · View at Scopus
  98. C. W. Noonan, J. S. Reif, M. Yost, and J. Touchstone, “Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases,” Scandinavian Journal of Work, Environment and Health, vol. 28, no. 1, pp. 42–48, 2002. View at Google Scholar · View at Scopus
  99. A. Huss, A. Spoerri, M. Egger, and M. Röösli, “Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population,” American Journal of Epidemiology, vol. 169, no. 2, pp. 167–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Boillée, C. Vande Velde, and D. Cleveland, “ALS: a disease of motor neurons and their non neuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. J. P. Julien and J. Kriz, “Transgenic mouse models of amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1013–1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Chang, Q. Kong, X. Shan et al., “Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS,” PLoS ONE, vol. 3, no. 8, Article ID e2849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Cozzolino and M. T. Carrì, “Mitochondrial dysfunction in ALS,” Progress in Neurobiology, vol. 97, no. 2, pp. 54–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Kheifets, J. D. Bowman, H. Checkoway et al., “Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: review and recommendations,” Occupational and Environmental Medicine, vol. 66, no. 2, pp. 72–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. K. Kondo and T. Tsubaki, “Case-control studies of motor neuron disease. Association with mechanical injuries,” Archives of Neurology, vol. 38, no. 4, pp. 220–226, 1981. View at Google Scholar · View at Scopus
  106. M. Feychting, F. Jonsson, N. L. Pedersen, and A. Ahlbom, “Occupational magnetic field exposure and neurodegenerative disease,” Epidemiology, vol. 14, no. 4, pp. 413–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Sorahan and L. Kheifets, “Mortality from Alzheimer's, motor neuron and Parkinson's disease in relation to magnetic field exposure: findings from the study of UK electricity generation and transmission workers, 1973–2004,” Occupational and Environmental Medicine, vol. 64, no. 12, pp. 820–826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. L. E. Parlett, J. D. Bowman, and E. Van Wijngaarden, “Evaluation of occupational exposure to magnetic fields and motor neuron disease mortality in a population-based cohort,” Journal of Occupational and Environmental Medicine, vol. 53, no. 12, pp. 1447–1451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Sorolla, G. Reverter-Branchat, J. Tamarit, I. Ferrer, J. Ros, and E. Cabiscol, “Proteomic and oxidative stress analysis in human brain samples of Huntington disease,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 667–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. N. Klepac, M. Relja, R. Klepac, S. Hećimović, T. Babić, and V. Trkulja, “Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects: a cross-sectional study,” Journal of Neurology, vol. 254, no. 12, pp. 1676–1683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. I. Túnez, I. Tasset, V. P. D. La Cruz, and A. Santamaría, “3-nitropropionic acid as a tool to study the mechanisms involved in huntington's disease: past, present and future,” Molecules, vol. 15, no. 2, pp. 878–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. M. N. Herrera-Mundo, D. Silva-Adaya, P. D. Maldonado et al., “S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction,” Neuroscience Research, vol. 56, no. 1, pp. 39–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Ramaswamy, J. L. McBride, and J. H. Kordower, “Animal models of Huntington's disease,” ILAR Journal, vol. 48, no. 4, pp. 356–373, 2007. View at Google Scholar · View at Scopus
  114. L. Kheifets, D. Renew, G. Sias, and J. Swanson, “Extremely low frequency electric fields and cancer: assessing the evidence,” Bioelectromagnetics, vol. 31, no. 2, pp. 89–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. International Agency for Research on Cancer-(IARC), “Non-ionizing radiation, part II, radiofrequency electromagnetic fields (RF-EMF),” Monograph, vol. 102, 2011. View at Google Scholar
  116. O. Arias-Carrión, L. Verdugo-Díaz, A. Feria-Velasco et al., “Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions,” Journal of Neuroscience Research, vol. 78, no. 1, pp. 16–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Cantello, R. Tarletti, and C. Civardi, “Transcranial magnetic stimulation and Parkinson's disease,” Brain Research Reviews, vol. 38, no. 3, pp. 309–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Pierantozzi, M. G. Palmieri, P. Mazzone et al., “Deep brain stimulation of both subthalamic nucleus and internal globus pallidus restores intracortical inhibition in Parkinson's disease paralleling apomorphine effects: a paired magnetic stimulation study,” Clinical Neurophysiology, vol. 113, no. 1, pp. 108–113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. A. V. Peterchev, D. L. Murphy, and S. H. Lisanby, “Repetitive transcranial magnetic stimulator with controllable pulse parameters,” Journal of Neural Engineering, vol. 8, no. 3, Article ID 036016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Naarala, A. Höytö, and A. Markkanen, “Cellular effects of electromagnetic fields,” ATLA Alternatives to Laboratory Animals, vol. 32, no. 4, pp. 355–360, 2004. View at Google Scholar · View at Scopus
  121. J. Luukkonen, A. Liimatainen, A. Höytö, J. Juutilainen, and J. Naarala, “Pre-exposure to 50 HZ magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells,” PLoS ONE, vol. 6, no. 3, Article ID e18021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. M. A. Martínez, A. Úbeda, M. A. Cid, and M. A. Trillo, “The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling,” Cellular Physiology and Biochemistry, vol. 29, no. 5-6, pp. 675–686, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. N. Kuster and F. Schönborn, “Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications,” Bioelectromagnetics, vol. 21, no. 7, pp. 508–514, 2000. View at Google Scholar · View at Scopus
  124. R. Costa, F. Ferreira-da-Silva, M. J. Saraiva, and I. Cardoso, “Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the kunitz protease inhibitor,” PLoS ONE, vol. 3, no. 8, Article ID e2899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Ebert, S. J. Eom, J. Schuderer et al., “Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz,” Physics in Medicine and Biology, vol. 50, no. 21, pp. 5203–5215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. W. Kainz, N. Nikoloski, W. Oesch et al., “Development of novel whole-body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well-characterized exposure,” Physics in Medicine and Biology, vol. 51, no. 20, article 5211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Paffi, M. Liberti, V. Lopresto et al., “A wire patch cell exposure system for in vitro experiments at wi-fi frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4086–4093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Merla, N. Ticaud, D. Arnaud-Cormos, B. Veyret, and P. Leveque, “Real-time RF exposure setup based on a multiple electrode array (MEA) for electrophysiological recording of neuronal networks,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 3, pp. 755–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. T. Y. Zhao, S. P. Zou, and P. E. Knapp, “Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes,” Neuroscience Letters, vol. 412, no. 1, pp. 34–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. A. R. Ferreira, F. Bonatto, M. A. De Bittencourt Pasquali et al., “Oxidative stress effects on the central nervous system of rats after acute exposure to ultra high frequency electromagnetic fields,” Bioelectromagnetics, vol. 27, no. 6, pp. 487–493, 2006. View at Publisher · View at Google Scholar · View at Scopus