Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 703164, 8 pages
http://dx.doi.org/10.1155/2012/703164
Review Article

Redox Regulation of Cysteine-Dependent Enzymes in Neurodegeneration

Center on Aging, School of Psychological and Behavioral Sciences, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA

Received 21 March 2012; Accepted 10 May 2012

Academic Editor: Pier Giorgio Mastroberardino

Copyright © 2012 Rodney P. Guttmann and Tamara J. Powell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Pandya, L. L. J. Mao, E. W. Zhou et al., “Neuroprotection for amyotrophic lateral sclerosis: role of stem cells, growth factors, and gene therapy,” Central Nervous System Agents in Medicinal Chemistry, vol. 12, no. 1, pp. 15–27, 2012. View at Google Scholar · View at Scopus
  2. D. J. Surmeier, J. N. Guzman, J. Sanchez-Padilla, and J. A. Goldberg, “The origins of oxidant stress in parkinson's disease and therapeutic strategies,” Antioxidants and Redox Signaling, vol. 14, no. 7, pp. 1289–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. M. Sayre, M. A. Smith, and G. Perry, “Chemistry and biochemistry of oxidative stress in neurodegenerative disease,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 721–738, 2001. View at Google Scholar · View at Scopus
  4. T. A. Clark, H. P. Lee, R. K. Rolston et al., “Oxidative stress and its implications for future treatments and management of Alzheimer disease,” International Journal of Biomedical Science, vol. 6, no. 3, pp. 225–227, 2010. View at Google Scholar · View at Scopus
  5. Y. Wang, J. Yang, and J. Yi, “Redox sensing by proteins: oxidative modifications on cysteines and the consequent events,” Antioxidants and Redox Signaling, vol. 16, no. 7, pp. 649–657, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. V. I. Lushchak, “Adaptive response to oxidative stress: bacteria, fungi, plants and animals,” Comparative Biochemistry and Physiology, vol. 153, no. 2, pp. 175–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ooe, S. M. M. Iguchi-Ariga, and H. Ariga, “Establishment of specific antibodies that recognize C106-oxidized DJ-1,” Neuroscience Letters, vol. 404, no. 1-2, pp. 166–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hu, Z. Zhang, W.-J. Shen, A. Nomoto, and S. Azhar, “Differential roles of cysteine residues in the cellular trafficking, dimerization, and function of the high-density lipoprotein receptor, SR-BI,” Biochemistry, vol. 50, no. 50, pp. 10860–10875, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Aracena-Parks, S. A. Goonasekera, C. P. Gilman, R. T. Dirksen, C. Hidalgo, and S. L. Hamilton, “Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1,” The Journal of Biological Chemistry, vol. 281, no. 52, pp. 40354–40368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Jordans, S. Jenko-Kokalj, N. M. Kühl et al., “Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions,” BMC Biochemistry, vol. 10, no. 1, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Jomova and M. Valko, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Spivey, “Rotenone and paraquat linked to Parkinson's Disease: human exposure study supports years of animal studies,” Environmental Health Perspectives, vol. 119, no. 6, article A259, 2011. View at Google Scholar · View at Scopus
  13. C. W. Olanow, “A rationale for monoamine oxidase inhibition as neuroprotective therapy for Parkinson's disease,” Movement Disorders, vol. 8, no. 1, supplement, pp. S1–S7, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. H. M. Cochemé and M. P. Murphy, “Complex I is the major site of mitochondrial superoxide production by paraquat,” The Journal of Biological Chemistry, vol. 283, no. 4, pp. 1786–1798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pitkanen and B. H. Robinson, “Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase,” The Journal of Clinical Investigation, vol. 98, pp. 345–351, 1996. View at Google Scholar
  16. J. R. Treberg, C. L. Quinlan, and M. D. Brand, “Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I),” The Journal of Biological Chemistry, vol. 286, no. 31, pp. 27103–27110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001. View at Google Scholar · View at Scopus
  18. S. K. Garg, V. Vitvitsky, R. Albin, and R. Banerjee, “Astrocytic redox remodeling by amyloid beta peptide,” Antioxidants and Redox Signaling, vol. 14, no. 12, pp. 2385–2397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Ansari and S. W. Scheff, “Oxidative stress in the progression of alzheimer disease in the frontal cortex,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 2, pp. 155–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Hall, P. A. Karplus, and L. B. Poole, “Typical 2-Cys peroxiredoxins—structures, mechanisms and functions,” FEBS Journal, vol. 276, no. 9, pp. 2469–2477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. T. Reed, W. M. Pierce Jr., D. M. Turner, W. R. Markesbery, and D. Allan Butterfield, “Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 2019–2029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Cumming, R. Dargusch, W. H. Fischer, and D. Schubert, “Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid β-resistant nerve cells,” The Journal of Biological Chemistry, vol. 282, no. 42, pp. 30523–30534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Fang, T. Nakamura, D. H. Cho, Z. Gu, and S. A. Lipton, “S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18742–18747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Honjo, H. Ito, T. Horibe, R. Takahashi, and K. Kawakami, “Protein disulfide isomerase-immunopositive inclusions in patients with Alzheimer disease,” Brain Research, vol. 1349, pp. 90–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Uehara, T. Nakamura, D. Yao et al., “S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration,” Nature, vol. 441, no. 7092, pp. 513–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, “The calpain system,” Physiological Reviews, vol. 83, no. 3, pp. 731–801, 2003. View at Google Scholar · View at Scopus
  27. S. J. Storr, N. O. Carragher, M. C. Frame, T. Parr, and S. G. Martin, “The calpain system and cancer,” Nature Reviews Cancer, vol. 11, no. 5, pp. 364–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Guttmann, J. S. Elce, P. D. Bell, J. Clay Isbell, and G. V. W. Johnson, “'Oxidation inhibits substrate proteolysis by calpain I but not autolysis,” The Journal of Biological Chemistry, vol. 272, no. 3, pp. 2005–2012, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. R. P. Guttmann and G. V. W. Johnson, “Oxidative stress inhibits calpain activity in situ,” The Journal of Biological Chemistry, vol. 273, no. 21, pp. 13331–13338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Marcum, J. K. Mathenia, R. Chan, and R. P. Guttmann, “Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 334, no. 2, pp. 342–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Lesage and A. Brice, “Parkinson's disease: from monogenic forms to genetic susceptibility factors,” Human Molecular Genetics, vol. 18, no. 1, pp. R48–R59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Cheng, L. Wang, and C. C. Wang, “Domain a of protein disulfide isomerase plays key role in inhibiting α-synuclein fibril formation,” Cell Stress and Chaperones, vol. 15, no. 4, pp. 415–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. J. Conn, W. Gao, A. McKee et al., “Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology,” Brain Research, vol. 1022, no. 1-2, pp. 164–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Pal, M. Miranda, and M. Narayan, “Nitrosative stress-induced Parkinsonian Lewy-like aggregates prevented through polyphenolic phytochemical analog intervention,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 324–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Wilson, “The role of cysteine oxidation in DJ-1 function and dysfunction,” Antioxidants and Redox Signaling, vol. 15, no. 1, pp. 111–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Waak, S. S. Weber, K. Görner et al., “Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1,” The Journal of Biological Chemistry, vol. 284, no. 21, pp. 14245–14257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Meng, D. Yao, Y. Shi et al., “Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation,” Molecular Neurodegeneration, vol. 6, no. 1, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. E. S. P. Wong, J. M. M. Tan, C. Wang et al., “Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations,” The Journal of Biological Chemistry, vol. 282, no. 16, pp. 12310–12318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Kim, K. S. Kwon, H. W. Yoon, S. R. Lee, and S. G. Rhee, “Oxidation of proteinaceous cysteine residues by dopamine-derived H2O2 in PC12 cells,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 414–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Kuhn, R. E. Arthur Jr., D. M. Thomas, and L. A. Elferink, “Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson's disease,” Journal of Neurochemistry, vol. 73, no. 3, pp. 1309–1317, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Sadidi, T. J. Geddes, and D. M. Kuhn, “S-thiolation of tyrosine hydroxylase by reactive nitrogen species in the presence of cysteine or glutathione,” Antioxidants and Redox Signaling, vol. 7, no. 7-8, pp. 863–869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Di Giovanni, M. Pessia, and R. Di Maio, “Redox sensitivity of tyrosine hydroxylase activity and expression in dopaminergic dysfunction,” CNS & Neurological Disorders: Drug Targets, vol. 11, no. 4, pp. 419–429, 2012. View at Google Scholar
  43. A. D. Walling, “Amyotrophic lateral sclerosis: lou Gehrig's disease,” American Family Physician, vol. 59, no. 6, pp. 1489–1496, 1999. View at Google Scholar · View at Scopus
  44. W. T. Longstreth, L. M. Nelson, T. D. Koepsell, and G. Van Belle, “Hypotheses to explain the association between vigorous physical activity and amyotrophic lateral sclerosis,” Medical Hypotheses, vol. 34, no. 2, pp. 144–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. D. A. Bosco, G. Morfini, N. M. Karabacak et al., “Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS,” Nature Neuroscience, vol. 13, no. 11, pp. 1396–1403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. L. Redler, K. C. Wilcox, E. A. Proctor, L. Fee, M. Caplow, and N. V. Dokholyan, “Glutathionylation at Cys-111 induces dissociation of wild type and FALS mutant SOD1 dimers,” Biochemistry, vol. 50, no. 32, pp. 7057–7066, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. K. Smith, C. N. Patil, S. Patlolla, B. W. Gunter, G. W. Booz, and R. J. Duhé, “Identification of a redox-sensitive switch within the JAK2 catalytic domain,” Free Radical Biology and Medicine, vol. 52, no. 6, pp. 1101–1110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. R. K. Monroe and S. W. Halvorsen, “Environmental toxicants inhibit neuronal Jak tyrosine kinase by mitochondrial disruption,” NeuroToxicology, vol. 30, no. 4, pp. 589–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Haendeler, U. Weiland, A. M. Zeiher, and S. Dimmeler, “Effects of redox-related congeners of NO on apoptosis and caspase-3 activity,” Nitric Oxide, vol. 1, no. 4, pp. 282–293, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Liu and J. S. Stamler, “NO: an inhibitor of cell death,” Cell Death and Differentiation, vol. 6, no. 10, pp. 937–942, 1999. View at Google Scholar · View at Scopus
  51. G. Melino, M. V. Catani, M. Corazzari, P. Guerrieri, and F. Bernassola, “Nitric oxide can inhibit apoptosis or switch it into necrosis,” Cellular and Molecular Life Sciences, vol. 57, no. 4, pp. 612–622, 2000. View at Google Scholar · View at Scopus
  52. A. Adamczyk, A. Kaźmierczak, G. A. Czapski, and J. B. Strosznajder, “α-Synuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxide-dependent activation of caspase-3,” FEBS Letters, vol. 584, no. 15, pp. 3504–3508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. C. Kang, P. K. Kim, B. M. Choi et al., “Regulation of programmed cell death in neuronal cells by nitric oxide,” In Vivo, vol. 18, no. 3, pp. 367–376, 2004. View at Google Scholar · View at Scopus
  54. N. Numajiri, K. Takasawa, T. Nishiya et al., “On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10349–10354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. R. Lee, K. S. Yang, J. Kwon, C. Lee, W. Jeong, and S. G. Rhee, “Reversible inactivation of the tumor suppressor PTEN by H2O2,” The Journal of Biological Chemistry, vol. 277, no. 23, pp. 20336–20342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. R. C. Cumming and D. Schubert, “Amyloid-β induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease,” FASEB Journal, vol. 19, no. 14, pp. 2060–2062, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Wang, D. Tamae, T. LeBon, J. E. Shively, Y. Yen, and J. J. Li, “The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells,” Cancer Research, vol. 65, no. 22, pp. 10338–10346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Goplen, J. Wang, P. Ø. Enger et al., “Protein disulfide isomerase expression is related to the invasive properties of malignant glioma,” Cancer Research, vol. 66, no. 20, pp. 9895–9902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. S. Jang, S. Lal, and J. A. Greenwood, “Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2,” Neurochemical Research, vol. 35, no. 11, pp. 1796–1804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Lal, J. La Du, R. L. Tanguay, and J. A. Greenwood, “Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment,” Journal of Neuroscience Research, vol. 90, pp. 769–781, 2012. View at Publisher · View at Google Scholar
  61. C. M. Clements, R. S. McNally, B. J. Conti, T. W. Mak, and J. P. Y. Ting, “DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 15091–15096, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. S. McNally, B. K. Davis, C. M. Clements, M. A. Accavitti-Loper, T. W. Mak, and J. P. Y. Ting, “DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-κB,” The Journal of Biological Chemistry, vol. 286, no. 6, pp. 4098–4106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Bertoni, J. P. Arlette, H. H. Fernandez et al., “Increased melanoma risk in Parkinson disease: a prospective clinicopathological study,” Archives of Neurology, vol. 67, no. 3, pp. 347–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Fujiwara, H. Marusawa, H. Q. Wang et al., “Parkin as a tumor suppressor gene for hepatocellular carcinoma,” Oncogene, vol. 27, no. 46, pp. 6002–6011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Poulogiannis, R. E. McIntyre, M. Dimitriadi et al., “PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15145–15150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. C. Kim, H. Kitaura, S. M. M. Iguchi-Ariga, and H. Ariga, “DJ-1, an oncogene and causative gene for familial Parkinson's disease, is essential for SV40 transformation in mouse fibroblasts through up-regulation of c-Myc,” FEBS Letters, vol. 584, no. 18, pp. 3891–3895, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Ren, K. Fu, C. Mu, B. Li, D. Wang, and G. Wang, “DJ-1, a cancer and Parkinson's disease associated protein, regulates autophagy through JNK pathway in cancer cells,” Cancer Letters, vol. 297, no. 1, pp. 101–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Somwar, H. Erdjument-Bromage, E. Larsson et al., “Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 16375–16380, 2011. View at Publisher · View at Google Scholar
  69. G. Joshi, C. D. Aluise, M. P. Cole et al., “Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain,” Neuroscience, vol. 166, no. 3, pp. 796–807, 2010. View at Publisher · View at Google Scholar · View at Scopus