Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013 (2013), Article ID 162094, 9 pages
http://dx.doi.org/10.1155/2013/162094
Research Article

Zinc Protoporphyrin Upregulates Heme Oxygenase-1 in PC-3 Cells via the Stress Response Pathway

ORTD, Albert Einstein Medical Center, 5501 Old York Road, Korman 214, Philadelphia, PA 19141-3098, USA

Received 28 August 2012; Revised 4 January 2013; Accepted 8 January 2013

Academic Editor: Afshin Samali

Copyright © 2013 Simon C. M. Kwok. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bauer, K. Huse, U. Settmacher, and R. A. Claus, “The heme oxygenase-carbon monoxide system: regulation and role in stress response and organ failure,” Intensive Care Medicine, vol. 34, no. 4, pp. 640–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jozkowicz, H. Was, and J. Dulak, “Heme oxygenase-1 in tumors: is it a false friend?” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2099–2117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Maines and P. A. Abrahamsson, “Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution,” Urology, vol. 47, no. 5, pp. 727–733, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Gueron, A. De Siervi, M. Ferrando et al., “Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells,” Molecular Cancer Research, vol. 7, no. 11, pp. 1745–1755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Sacca, R. Meiss, G. Casas et al., “Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer,” British Journal of Cancer, vol. 97, no. 12, pp. 1683–1689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Alam and J. L. Cook, “Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway,” Current Pharmaceutical Design, vol. 9, no. 30, pp. 2499–2511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Alam and J. L. Cook, “How many transcription factors does it take to turn on the heme oxygenase-1 gene?” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 2, pp. 166–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Okinaga, K. Takahashi, K. Takeda et al., “Regulation of human heme oxygenase-1 gene expression under thermal stress,” Blood, vol. 87, no. 12, pp. 5074–5084, 1996. View at Google Scholar · View at Scopus
  9. A. Kallin, L. E. Johannessen, P. D. Cani et al., “SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55γ,” Journal of Lipid Research, vol. 48, no. 7, pp. 1628–1636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Deshane, J. Kim, S. Bolisetty, T. D. Hock, N. Hill-Kapturczak, and A. Agarwal, “Sp1 regulates chromatin looping between an intronic enhancer and distal promoter of the human heme oxygenase-1 gene in renal cells,” Journal of Biological Chemistry, vol. 285, no. 22, pp. 16476–16486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Yang, X. Nguyen, J. Ou, P. Rekulapelli, D. K. Stevenson, and P. A. Dennery, “Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis,” Blood, vol. 97, no. 5, pp. 1306–1313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Hirai, T. Sasahira, H. Ohmori, K. Fujii, and H. Kuniyasu, “Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice,” International Journal of Cancer, vol. 120, no. 3, pp. 500–505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fang, K. Greish, H. Qin et al., “HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: in vitro and in vivo anticancer effect,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, no. 3, pp. 540–547, 2012. View at Publisher · View at Google Scholar
  14. C. H. Hsieh, J. C. Y. Jeng, M. W. Hsieh et al., “Involvement of the p38 pathway in the differential induction of heme oxygenase-1 by statins in Neuro-2A cells exposed to lipopolysaccharide,” Drug and Chemical Toxicology, vol. 34, no. 1, pp. 8–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. C. M. Kwok, S. P. Samuel, and J. Handal, “Atorvastatin activates heme oxygenase-1 at the stress response elements,” Journal of Cellular and Molecular Medicine, vol. 16, no. 2, pp. 394–400, 2012. View at Publisher · View at Google Scholar
  16. S. C. M. Kwok and I. Daskal, “Brefeldin A activates CHOP promoter at the AARE, ERSE and AP-1 elements,” Molecular and Cellular Biochemistry, vol. 319, no. 1-2, pp. 203–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Jaiswal, “Regulation of genes encoding NAD(P)H:quinone oxidoreductases,” Free Radical Biology and Medicine, vol. 29, no. 3-4, pp. 254–262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Nishinaka, Y. Ichijo, M. Ito et al., “Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element,” Toxicology Letters, vol. 170, no. 3, pp. 238–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Giudice, C. Arra, and M. C. Turco, “Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents,” Methods in Molecular Biology, vol. 647, pp. 37–74, 2010. View at Google Scholar · View at Scopus
  20. H. C. Huang, T. Nguyen, and C. B. Pickett, “Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42769–42774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Bloom and A. K. Jaiswal, “Phosphorylation of Nrf2 at Ser40 by Protein Kinase C in Response to Antioxidants Leads to the Release of Nrf2 from INrf2, but Is Not Required for Nrf2 Stabilization/Accumulation in the Nucleus and Transcriptional Activation of Antioxidant Response Element-mediated NAD(P)H:Quinone Oxidoreductase-1 Gene Expression,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 44675–44682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. F. Reichard, G. T. Motz, and A. Puga, “Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1,” Nucleic Acids Research, vol. 35, no. 21, pp. 7074–7086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Rushworth, R. M. Ogborne, C. A. Charalambos, and M. A. O'Connell, “Role of protein kinase C δ in curcumin-induced antioxidant response element-mediated gene expression in human monocytes,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1007–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. C. Kim, W. K. Jeon, H. Y. Hong et al., “The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCδ/Nrf2/ARE signaling to up-regulation of heme oxygenase-1,” Journal of Ethnopharmacology, vol. 113, no. 2, pp. 240–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. M. Ogborne, S. A. Rushworth, and M. A. O'Connell, “Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2,” Biochemical and Biophysical Research Communications, vol. 373, no. 4, pp. 584–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zhang and H. J. Forman, “Acrolein induces heme oxygenase-1 through PKC-δ and PI3K in human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 4, pp. 483–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. Lee, S. I. Jeong, H. Yang et al., “Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells,” Journal of Cellular Biochemistry, vol. 112, no. 9, pp. 2352–2360, 2011. View at Publisher · View at Google Scholar
  28. S. P. Soltoff, “Rottlerin: an inappropriate and ineffective inhibitor of PKCδ,” Trends in Pharmacological Sciences, vol. 28, no. 9, pp. 453–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. I. Rojo, M. Salina, M. Salazar et al., “Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-ζ pathway and Sp1,” Free Radical Biology and Medicine, vol. 41, no. 2, pp. 247–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Numazawa, M. Ishikawa, A. Yoshida, S. Tanaka, and T. Yoshida, “Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress,” American Journal of Physiology-Cell Physiology, vol. 285, no. 2, pp. C334–C342, 2003. View at Google Scholar · View at Scopus
  31. C. T. Powell, N. J. Brittis, D. Stec, H. Hug, W. D. W. Heston, and W. R. Fair, “Persistent membrane translocation of protein kinase C α during 12-O- tetradecanoylphorbol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells,” Cell Growth and Differentiation, vol. 7, no. 4, pp. 419–428, 1996. View at Google Scholar · View at Scopus
  32. J. R. Stewart and C. A. O'Brian, “Resveratrol antagonizes EGFR-dependent Erk1/2 activation in human androgen-independent prostate cancer cells with associated isozyme-selective PKCα inhibition,” Investigational New Drugs, vol. 22, no. 2, pp. 107–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. E. J. Park, J. H. Lim, S. I. Nam, J. W. Park, and T. K. Kwon, “Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC δ-independent pathway in human colon cancer HT29 cells,” Biochimie, vol. 92, no. 1, pp. 110–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Han, P. Pantazis, T. S. Lange, J. H. Wyche, and E. A. Hendrickson, “The staurosporine analog, Ro-31-8220, induces apoptosis independently of its ability to inhibit protein kinase C,” Cell Death and Differentiation, vol. 7, no. 6, pp. 521–530, 2000. View at Google Scholar · View at Scopus
  35. D. R. Alessi, “The protein kinase c inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1β (Rsk-2) and p70 S6 kinase,” FEBS Letters, vol. 402, no. 2-3, pp. 121–123, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Beltman, F. McCormick, and S. J. Cook, “The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen- activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase,” Journal of Biological Chemistry, vol. 271, no. 43, pp. 27018–27024, 1996. View at Publisher · View at Google Scholar · View at Scopus