Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 543803, 15 pages
http://dx.doi.org/10.1155/2013/543803
Review Article

Synaptic Dysfunction in Prion Diseases: A Trafficking Problem?

Dulbecco Telethon Institute and Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri,” Via G. La Masa 19, 20156 Milano, Italy

Received 11 July 2013; Accepted 8 October 2013

Academic Editor: Alessio Cardinale

Copyright © 2013 Assunta Senatore et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Collinge, “Prion diseases of humans and animals: their causes and molecular basis,” Annual Review of Neuroscience, vol. 24, pp. 519–550, 2001. View at Publisher · View at Google Scholar
  2. J. C. Watts, A. Balachandran, and D. Westaway, “The expanding universe of prion diseases,” PLOS Pathogens, vol. 2, no. 3, p. e26, 2006. View at Publisher · View at Google Scholar
  3. R. S. Knight and R. G. Will, “Prion diseases,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 75, supplement 1, pp. i36–i42, 2004. View at Google Scholar
  4. P. Brown, C. J. Gibbs Jr., P. Rodgers-Johnson et al., “Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease,” Annals of Neurology, vol. 35, no. 5, pp. 513–529, 1994. View at Publisher · View at Google Scholar
  5. P. P. Liberski, B. Sikorska, and P. Brown, “Kuru: the first prion disease,” Advances in Experimental Medicine and Biology, vol. 724, pp. 143–153, 2012. View at Publisher · View at Google Scholar
  6. P. Brown, M. Preece, J.-P. Brandel et al., “Iatrogenic Creutzfeldt-Jakob disease at the millennium,” Neurology, vol. 55, no. 8, pp. 1075–1081, 2000. View at Google Scholar · View at Scopus
  7. J. W. Ironside, “Variant Creutzfeldt-Jakob disease: an update,” Folia Neuropathologica, vol. 50, no. 1, pp. 50–56, 2012. View at Google Scholar · View at Scopus
  8. S. B. Prusiner, “Novel proteinaceous infectious particles cause scrapie,” Science, vol. 216, no. 4542, pp. 136–144, 1982. View at Google Scholar · View at Scopus
  9. L. Westergard, H. M. Christensen, and D. A. Harris, “The cellular prion protein (PrPC): its physiological function and role in disease,” Biochimica et Biophysica Acta, vol. 1772, no. 6, pp. 629–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Chiesa and D. A. Harris, “Fishing for prion protein function,” PLoS Biology, vol. 7, no. 3, p. e75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Biasini, J. A. Turnbaugh, U. Unterberger, and D. A. Harris, “Prion protein at the crossroads of physiology and disease,” Trends in Neurosciences, vol. 35, no. 2, pp. 92–103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Campana, D. Sarnataro, and C. Zurzolo, “The highways and byways of prion protein trafficking,” Trends in Cell Biology, vol. 15, no. 2, pp. 102–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K.-M. Pan, M. Baldwin, J. Nguyen et al., “Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10962–10966, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Safar, H. Wille, V. Itri et al., “Eight prion strains have PrP(Sc) molecules with different conformations,” Nature Medicine, vol. 4, no. 10, pp. 1157–1165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Goold, S. Rabbanian, L. Sutton et al., “Rapid cell-surface prion protein conversion revealed using a novel cell system,” Nature Communications, vol. 2, no. 1, p. 281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. R. Borchelt, A. Taraboulos, and S. B. Prusiner, “Evidence for synthesis of scrapie prion proteins in the endocytic pathway,” Journal of Biological Chemistry, vol. 267, no. 23, pp. 16188–16199, 1992. View at Google Scholar · View at Scopus
  17. Z. Marijanovic, A. Caputo, V. Campana, and C. Zurzolo, “Identification of an intracellular site of prion conversion,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Come, P. E. Fraser, and P. T. Lansbury Jr., “A kinetic model for amyloid formation in the prion diseases: importance of seeding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 5959–5963, 1993. View at Google Scholar · View at Scopus
  19. J. R. Silveira, G. J. Raymond, A. G. Hughson et al., “The most infectious prion protein particles,” Nature, vol. 437, no. 7056, pp. 257–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Mastrianni, “The genetics of prion diseases,” Genetics in Medicine, vol. 12, no. 4, pp. 187–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Puoti, A. Bizzi, G. Forloni, J. G. Safar, F. Tagliavini, and P. Gambetti, “Sporadic human prion diseases: molecular insights and diagnosis,” Lancet Neurology, vol. 11, no. 7, pp. 618–628, 2012. View at Publisher · View at Google Scholar
  22. L. G. Goldfarb, R. B. Petersen, M. Tabaton et al., “Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism,” Science, vol. 258, no. 5083, pp. 806–808, 1992. View at Google Scholar · View at Scopus
  23. B. Ghetti, P. Piccardo, B. Frangione et al., “Prion protein amyloidosis,” Brain Pathology, vol. 6, no. 2, pp. 127–145, 1996. View at Google Scholar · View at Scopus
  24. C. Jansen, P. Parchi, S. Capellari et al., “Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP,” Acta Neuropathologica, vol. 119, no. 2, pp. 189–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Chiesa and D. A. Harris, “Prion diseases: what is the neurotoxic molecule?” Neurobiology of Disease, vol. 8, no. 5, pp. 743–763, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. G. R. Mallucci, “Prion neurodegeneration: starts and stops at the synapse,” Prion, vol. 3, no. 4, pp. 195–201, 2009. View at Google Scholar · View at Scopus
  27. P. Brown, “The phantasmagoric immunology of transmissible spongiform encephalopathy,” Research Publications, vol. 68, pp. 305–313, 1990. View at Google Scholar · View at Scopus
  28. L. J. Berg, “Insights into the role of the immune system in prion diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 2, pp. 429–432, 1994. View at Google Scholar · View at Scopus
  29. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Forloni, N. Angeretti, R. Chiesa et al., “Neurotoxicity of a prion protein fragment,” Nature, vol. 362, no. 6420, pp. 543–546, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. D. W. Fairbairn, K. G. Carnahan, R. N. Thwaits, R. V. Grigsby, G. R. Holyoak, and K. L. O'Neill, “Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain,” FEMS Microbiology Letters, vol. 115, no. 2-3, pp. 341–346, 1994. View at Google Scholar · View at Scopus
  32. A. Giese, M. H. Groschup, B. Hess, and H. A. Kretzschmar, “Neuronal cell death in scrapie-infected mice is due to apoptosis,” Brain Pathology, vol. 5, no. 3, pp. 213–221, 1995. View at Google Scholar · View at Scopus
  33. P. J. Lucassen, “Detection of apoptosis in murine scrapie,” Neuroscience Letters, vol. 198, no. 3, pp. 185–188, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Lucas, G. Izquierdo, C. Muñoz, and F. Solano, “Internucleosomal breakdown of the DNA of brain cortex in human spongiform encephalopathy,” Neurochemistry International, vol. 31, no. 2, pp. 241–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Williams, P. J. Lucassen, D. Ritchie, and M. Bruce, “PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie,” Experimental Neurology, vol. 144, no. 2, pp. 433–438, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Dorandeu, L. Wingertsmann, F. Chrétien et al., “Neuronal apoptosis in fatal familial insomnia,” Brain Pathology, vol. 8, no. 3, pp. 531–537, 1998. View at Google Scholar · View at Scopus
  37. F. Gray, F. Chrétien, H. Adle-Biassette et al., “Neuronal apoptosis in Creutzfeldt-Jakob disease,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 4, pp. 321–328, 1999. View at Google Scholar · View at Scopus
  38. D. Jesionek-Kupnicka, J. Buczyński, R. Kordek, and P. P. Liberski, “Neuronal loss and apoptosis in experimental Creutzfeldt-Jakob disease in mice,” Folia Neuropathologica, vol. 37, no. 4, pp. 283–286, 1999. View at Google Scholar · View at Scopus
  39. E. Jamieson, M. Jeffrey, J. W. Ironside, and J. R. Fraser, “Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie,” NeuroReport, vol. 12, no. 10, pp. 2147–2153, 2001. View at Google Scholar · View at Scopus
  40. D. Jesionek-Kupnicka, R. Kordek, J. Buczyński, and P. P. Liberski, “Apoptosis in relation to neuronal loss in experimental Creutzfeldt-Jakob disease in mice,” Acta Neurobiologiae Experimentalis, vol. 61, no. 1, pp. 13–19, 2001. View at Google Scholar · View at Scopus
  41. I. Ferrer, “Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease,” Cerebellum, vol. 1, no. 3, pp. 213–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Sisó, B. Puig, R. Varea et al., “Abnormal synaptic protein expression and cell death in murine scrapie,” Acta Neuropathologica, vol. 103, no. 6, pp. 615–626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Serrano, J. Lyahyai, R. Bolea et al., “Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions,” Veterinary Research, vol. 40, no. 5, p. 42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. G. G. Kovacs and H. Budka, “Distribution of apoptosis-related proteins in sporadic Creutzfeldt-Jakob disease,” Brain Research, vol. 1323, pp. 192–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. C. Drew, C. L. Haigh, H. M. J. Klemm et al., “Optical imaging detects apoptosis in the brain and peripheral organs of prion-infected mice,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 2, pp. 143–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Chiesa, B. Drisaldi, E. Quaglio et al., “Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5574–5579, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. H. M. Schätzl, L. Laszlo, D. M. Holtzman et al., “A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis,” Journal of Virology, vol. 71, no. 11, pp. 8821–8831, 1997. View at Google Scholar · View at Scopus
  48. S. Cronier, H. Laude, and J. Peyrin, “Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 33, pp. 12271–12276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Falsig, T. Sonati, U. S. Herrmann et al., “Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures,” PLoS Pathogens, vol. 8, no. 11, Article ID e1002985, 2012. View at Publisher · View at Google Scholar
  50. M. Coulpier, S. Messiaen, R. Hamel, M. Fernández de Marco, T. Lilin, and M. Eloit, “Bax deletion does not protect neurons from BSE-induced death,” Neurobiology of Disease, vol. 23, no. 3, pp. 603–611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. D. Steele, O. D. King, W. S. Jackson et al., “Diminishing apoptosis by deletion of bax or overexpression of Bcl-2 does not protect against infectious prion toxicity in vivo,” Journal of Neuroscience, vol. 27, no. 47, pp. 13022–13027, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. A. D. Steele, C. Hetz, C. H. Yi et al., “Prion pathogenesis is independent of caspase-12,” Prion, vol. 1, no. 4, pp. 243–247, 2007. View at Google Scholar · View at Scopus
  53. R. Chiesa, P. Piccardo, S. Dossena et al., “Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 238–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Tooze and G. Schiavo, “Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration,” Current Opinion in Neurobiology, vol. 18, no. 5, pp. 504–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Levine and J. Yuan, “Autophagy in cell death: an innocent convict?” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2679–2688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Gordy and Y. W. He, “The crosstalk between autophagy and apoptosis: where does this lead?” Protein & Cell, vol. 3, no. 1, pp. 17–27, 2012. View at Publisher · View at Google Scholar
  57. J. W. Boellaard, W. Schlote, and J. Tateishi, “Neuronal autophagy in experimental Creutzfeldt-Jakob's disease,” Acta Neuropathologica, vol. 78, no. 4, pp. 410–418, 1989. View at Google Scholar · View at Scopus
  58. J. W. Boellaard, M. Kao, W. Schlote, and H. Diringer, “Neuronal autophagy in experimental scrapie,” Acta Neuropathologica, vol. 82, no. 3, pp. 225–228, 1991. View at Google Scholar · View at Scopus
  59. M. Jeffrey, J. R. Scott, A. Williams, and H. Fraser, “Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae,” Acta Neuropathologica, vol. 84, no. 5, pp. 559–569, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. P. P. Liberski, R. Yanagihara, C. J. Gibbs, and D. C. Gajdusek, “Neuronal autophagic vacuoles in experimental scrapie and Creutzfeldt-Jakob disease,” Acta Neuropathologica, vol. 83, no. 2, pp. 134–139, 1992. View at Google Scholar · View at Scopus
  61. B. Sikorska, P. P. Liberski, P. Giraud, N. Kopp, and P. Brown, “Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 12, pp. 2563–2573, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Dron, Y. Bailly, V. Beringue et al., “Scrg1 is induced in TSE and brain injuries, and associated with autophagy,” European Journal of Neuroscience, vol. 22, no. 1, pp. 133–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. P. P. Liberski, B. Sikorska, P. Gibson, and P. Brown, “Autophagy contributes to widespread neuronal degeneration in hamsters infected with the echigo-1 strain of creutzfeldt-jakob disease and mice infected with the fujisaki strain of gerstmann-sträussler-scheinker (GSS) syndrome,” Ultrastructural Pathology, vol. 35, no. 1, pp. 31–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Xu, C. Tian, S. B. Wang et al., “Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases,” Autophagy, vol. 8, no. 11, pp. 1604–1620, 2012. View at Publisher · View at Google Scholar
  65. A. Heiseke, Y. Aguib, C. Riemer, M. Baier, and H. M. Schätzl, “Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy,” Journal of Neurochemistry, vol. 109, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. E. Karapetyan, G. F. Sferrazza, M. Zhou et al., “Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 17, pp. 7044–7049, 2013. View at Publisher · View at Google Scholar
  67. T. Nakagaki, K. Satoh, D. Ishibashi et al., “FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice,” Autophagy, vol. 9, no. 9, pp. 1386–1394, 2013. View at Google Scholar
  68. C. J. Cortes, K. Qin, J. Cook, A. Solanki, and J. A. Mastrianni, “Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Sträussler-Scheinker disease,” Journal of Neuroscience, vol. 32, no. 36, pp. 12396–12405, 2012. View at Publisher · View at Google Scholar
  69. Y. Aguib, A. Heiseke, S. Gilch et al., “Autophagy induction by trehalose counteracts cellular prion infection,” Autophagy, vol. 5, no. 3, pp. 361–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Marzo, Z. Marijanovic, D. Browman, Z. Chamoun, A. Caputo, and C. Zurzolo, “4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy,” Journal of Cell Science, vol. 126, part 6, pp. 1345–1354, 2013. View at Google Scholar
  71. E. Wong and A. M. Cuervo, “Autophagy gone awry in neurodegenerative diseases,” Nature Neuroscience, vol. 13, no. 7, pp. 805–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. P. V. Belichenko, D. Brown, M. Jeffrey, and J. R. Fraser, “Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice,” Neuropathology and Applied Neurobiology, vol. 26, no. 2, pp. 143–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Jeffrey, W. G. Halliday, J. Bell et al., “Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus,” Neuropathology and Applied Neurobiology, vol. 26, no. 1, pp. 41–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Brown, P. Belichenko, J. Sales, M. Jeffrey, and J. R. Fraser, “Early loss of dendritic spines in murine scrapie revealed by confocal analysis,” NeuroReport, vol. 12, no. 1, pp. 179–183, 2001. View at Google Scholar · View at Scopus
  75. B. C. Gray, Z. Siskova, V. H. Perry, and V. O'Connor, “Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology,” Neurobiology of Disease, vol. 35, no. 1, pp. 63–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Siskova, A. Page, V. O'Connor, and V. H. Perry, “Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping,” American Journal of Pathology, vol. 175, no. 4, pp. 1610–1621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Cunningham, R. Deacon, H. Wells et al., “Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2147–2155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. Z. Chiti, O. M. Knutsen, S. Betmouni, and J. R. T. Greene, “An integrated, temporal study of the behavioural, electrophysiological and neuropathological consequences of murine prion disease,” Neurobiology of Disease, vol. 22, no. 2, pp. 363–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. G. R. Mallucci, M. D. White, M. Farmer et al., “Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice,” Neuron, vol. 53, no. 3, pp. 325–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. J. A. Moreno, H. Radford, D. Peretti et al., “Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration,” Nature, vol. 485, no. 7399, pp. 507–511, 2012. View at Google Scholar
  81. J. Clinton, C. Forsyth, M. C. Royston, and G. W. Roberts, “Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study,” NeuroReport, vol. 4, no. 1, pp. 65–68, 1993. View at Google Scholar · View at Scopus
  82. A. Senatore, S. Colleoni, C. Verderio et al., “Mutant PrP suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCC α2δ-1 subunit,” Neuron, vol. 74, no. 2, pp. 300–313, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Kitamoto, R.-W. Shin, K. Doh-ura et al., “Abnormal isoform of prion proteins accumulates in the synaptic structures of the central nervous system in patients with Creutzfeldt-Jakob disease,” American Journal of Pathology, vol. 140, no. 6, pp. 1285–1294, 1992. View at Google Scholar · View at Scopus
  84. M. Jeffrey, C. Goodsir, G. McGovern, S. J. Barmada, A. Z. Medrano, and D. A. Harris, “Prion protein with an insertional mutation accumulates on axonal and dendritic plasmalemma and is associated with distinctive ultrastructural changes,” American Journal of Pathology, vol. 175, no. 3, pp. 1208–1217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Novitskaya, O. V. Bocharova, I. Bronstein, and I. V. Baskakov, “Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13828–13836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Simoneau, H. Rezaei, N. Salès et al., “In vitro and in vivo neurotoxicity of prion protein oligomers,” PLoS pathogens, vol. 3, no. 8, p. e125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Zhou, G. Ottenberg, G. F. Sferrazza, and C. I. Lasmeźas, “Highly neurotoxic monomeric α-helical prion protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 8, pp. 3113–3118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. E. Lai, T. Teodoro, and A. Volchuk, “Endoplasmic reticulum stress: signaling the unfolded protein response,” Physiology, vol. 22, no. 3, pp. 193–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Hetz and L. H. Glimcher, “Fine-tuning of the unfolded protein response: assembling the IRE1α interactome,” Molecular Cell, vol. 35, no. 5, pp. 551–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Han, S. H. Back, J. Hur et al., “ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death,” Nature Cell Biology, vol. 15, pp. 481–490, 2013. View at Publisher · View at Google Scholar
  91. A. Mukherjee, D. Morales-Scheihing, D. Gonzalez-Romero, K. Green, G. Taglialatela, and C. Soto, “Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival,” PLoS Pathogens, vol. 6, no. 10, Article ID e1001138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Chiesa, P. Piccardo, B. Ghetti, and D. A. Harris, “Neurological illness in transgenic mice expressing a prion protein with an insertional mutation,” Neuron, vol. 21, no. 6, pp. 1339–1351, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Dossena, L. Imeri, M. Mangieri et al., “Mutant prion protein expression causes motor and memory deficits and abnormal sleep patterns in a transgenic mouse model,” Neuron, vol. 60, no. 4, pp. 598–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Daude, S. Lehmann, and D. A. Harris, “Identification of intermediate steps in the conversion of a mutant prion protein to a Scrapie-like form in cultured cells,” Journal of Biological Chemistry, vol. 272, no. 17, pp. 11604–11612, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Drisaldi, R. S. Stewart, C. Adles et al., “Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation,” Journal of Biological Chemistry, vol. 278, no. 24, pp. 21732–21743, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Fioriti, S. Dossena, L. R. Stewart et al., “Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11320–11328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Quaglio, E. Restelli, A. Garofoli et al., “Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction,” PLoS One, vol. 6, no. 4, Article ID e19339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Biasini, T. Massignan, L. Fioriti et al., “Analysis of the cerebellar proteome in a transgenic mouse model of inherited prion disease reveals preclinical alteration of calcineurin activity,” Proteomics, vol. 6, no. 9, pp. 2823–2834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Biasini, L. Tapella, E. Restelli, M. Pozzoli, T. Massignan, and R. Chiesa, “The hydrophobic core region governs mutant prion protein aggregation and intracellular retention,” Biochemical Journal, vol. 430, no. 3, pp. 477–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. A. C. Dolphin, “The alpha2delta subunits of voltage-gated calcium channels,” Biochim Biophys Acta, vol. 1828, no. 7, pp. 1541–1549, 2013. View at Publisher · View at Google Scholar
  101. C. Canti, M. Nieto-Rostro, I. Foucault et al., “The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11230–11235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. M. B. Hoppa, B. Lana, W. Margas, A. C. Dolphin, and T. A. Ryan, “alpha2delta expression sets presynaptic calcium channel abundance and release probability,” Nature, vol. 486, no. 7401, pp. 122–125, 2012. View at Google Scholar
  103. D. Rutishauser, K. D. Mertz, R. Moos et al., “The comprehensive native interactome of a fully functional tagged prion protein,” PLoS One, vol. 4, no. 2, Article ID e4446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Kleene, G. Loers, J. Langer, Y. Frobert, F. Buck, and M. Schachner, “Prion protein regulates glutamate-dependent lactate transport of astrocytes,” Journal of Neuroscience, vol. 27, no. 45, pp. 12331–12340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Khosravani, Y. Zhang, S. Tsutsui et al., “Prion protein attenuates excitotoxicity by inhibiting NMDA receptors,” Journal of Cell Biology, vol. 181, no. 3, pp. 551–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. N. T. Watt, D. R. Taylor, T. L. Kerrigan et al., “Prion protein facilitates uptake of zinc into neuronal cells,” Nature Communications, vol. 3, Article ID 1134, 2012. View at Publisher · View at Google Scholar
  108. H. You, S. Tsutsui, S. Hameed et al., “Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 5, pp. 1737–1742, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Hetz, J. Castilla, and C. Soto, “Perturbation of endoplasmic reticulum homeostasis facilitates prion replication,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 12725–12733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Béranger, A. Mangé, B. Goud, and S. Lehmann, “Stimulation of PrPC retrograde transport toward the endoplasmic reticulum increases accumulation of PrPSc in prion-infected cells,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38972–38977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Torres, K. Castillo, R. Armisén, A. Stutzin, C. Soto, and C. Hetz, “Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress,” PLoS One, vol. 5, no. 12, Article ID e15658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. M. K. Sandberg, P. Wallén, M. A. Wikström, and K. Kristensson, “Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (CaV 2.2) which is ameliorated by quinacrine treatment,” Neurobiology of Disease, vol. 15, no. 1, pp. 143–151, 2004. View at Google Scholar
  113. T. Massignan, E. Biasini, E. Lauranzano et al., “Mutant prion protein expression is associated with an alteration of the rab GDP dissociation inhibitor α (GDI)/rab11 pathway,” Molecular and Cellular Proteomics, vol. 9, no. 4, pp. 611–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Uchiyama, N. Muramatsu, M. Yano, T. Usui, H. Miyata, and S. Sakaguchi, “Prions disturb post-Golgi trafficking of membrane proteins,” Nature Communications, vol. 4, Article ID 1846, 2013. View at Publisher · View at Google Scholar
  115. U. Unterberger, R. Höftberger, E. Gelpi, H. Flicker, H. Budka, and T. Voigtländer, “Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 4, pp. 348–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Barclay, N. Balaguero, M. Mione et al., “Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells,” Journal of Neuroscience, vol. 21, no. 16, pp. 6095–6104, 2001. View at Google Scholar · View at Scopus
  117. S. V. Ivanov, J. M. Ward, L. Tessarollo et al., “Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene,” American Journal of Pathology, vol. 165, no. 3, pp. 1007–1018, 2004. View at Google Scholar · View at Scopus
  118. G. E. Hardingham and H. Bading, “Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders,” Nature Reviews Neuroscience, vol. 11, no. 10, pp. 682–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. M. S. Beattie, A. R. Ferguson, and J. C. Bresnahan, “AMPA-receptor trafficking and injury-induced cell death,” The European Journal of Neuroscience, vol. 32, no. 2, pp. 290–297, 2010. View at Google Scholar · View at Scopus
  120. E. Biasini, U. Unterberger, I. H. Solomon et al., “A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity,” Journal of Neuroscience, vol. 33, no. 6, pp. 2408–2418, 2013. View at Publisher · View at Google Scholar
  121. R. Linden, V. R. Martins, M. A. M. Prado, M. Cammarota, I. Izquierdo, and R. R. Brentani, “Physiology of the prion protein,” Physiological Reviews, vol. 88, no. 2, pp. 673–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Tapella, M. Stravalaci, A. Bastone, E. Biasini, M. Gobbi, and R. Chiesa, “Epitope scanning indicates structural differences in brain-derived monomeric and aggregated mutant prion proteins related to genetic prion diseases,” Biochemical Journal, vol. 454, pp. 417–425, 2013. View at Publisher · View at Google Scholar
  123. R. Chiesa, P. Piccardo, E. Quaglio et al., “Molecular distinction between pathogenic and infectious properties of the prion protein,” Journal of Virology, vol. 77, no. 13, pp. 7611–7622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. M. K. Sandberg, H. Al-Doujaily, B. Sharps, A. R. Clarke, and J. Collinge, “Prion propagation and toxicity in vivo occur in two distinct mechanistic phases,” Nature, vol. 470, no. 7335, pp. 540–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Brandner, S. Isenmann, A. Raeber et al., “Normal host prion protein necessary for scrapie-induced neurotoxicity,” Nature, vol. 379, no. 6563, pp. 339–343, 1996. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Mallucci, A. Dickinson, J. Linehan, P. Klöhn, S. Brandner, and J. Collinge, “Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis,” Science, vol. 302, no. 5646, pp. 871–874, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Chesebro, M. Trifilo, R. Race et al., “Anchorless prion protein results in infectious amyloid disease without clinical scrapie,” Science, vol. 308, no. 5727, pp. 1435–1439, 2005. View at Publisher · View at Google Scholar · View at Scopus