Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 704546, 14 pages
http://dx.doi.org/10.1155/2013/704546
Review Article

Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious Proteins

1Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Street 25, 53127 Bonn, Germany
2Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
3Department of Neurology, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Received 3 June 2013; Accepted 3 September 2013

Academic Editor: Roberto Chiesa

Copyright © 2013 Sybille Krauss and Ina Vorberg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Aguzzi, “Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis,” Journal of Neurochemistry, vol. 97, no. 6, pp. 1726–1739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Dickinson and V. M. Meikle, “A comparison of some biological characteristics of the mouse-passaged scrapie agents, 22A and ME7,” Genetical Research, vol. 13, no. 2, pp. 213–225, 1969. View at Google Scholar · View at Scopus
  3. R. Hecker, A. Taraboulos, M. Scott et al., “Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters,” Genes and Development, vol. 6, no. 7, pp. 1213–1228, 1992. View at Google Scholar · View at Scopus
  4. A. Taraboulos, K. Jendroska, D. Serban, S.-L. Yang, S. J. DeArmond, and S. B. Prusiner, “Regional mapping of prion proteins in brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7620–7624, 1992. View at Google Scholar · View at Scopus
  5. S. B. Prusiner, “Novel proteinaceous infectious particles cause scrapie,” Science, vol. 216, no. 4542, pp. 136–144, 1982. View at Google Scholar · View at Scopus
  6. G. Legname, I. V. Baskakov, H.-O. B. Nguyen et al., “Synthetic mammalian prions,” Science, vol. 305, no. 5684, pp. 673–676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. R. Deleault, B. T. Harris, J. R. Rees, and S. Supattapone, “Formation of native prions from minimal components in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9741–9746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Wang, X. Wang, C.-G. Yuan, and J. Ma, “Generating a prion with bacterially expressed recombinant prion protein,” Science, vol. 327, no. 5969, pp. 1132–1135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Bessen and R. F. Marsh, “Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy,” Journal of Virology, vol. 68, no. 12, pp. 7859–7868, 1994. View at Google Scholar · View at Scopus
  10. J. Safar, H. Wille, V. Itri et al., “Eight prion strains have PrP(Sc) molecules with different conformations,” Nature Medicine, vol. 4, no. 10, pp. 1157–1165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. G. C. Telling, P. Parchi, S. J. DeArmond et al., “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science, vol. 274, no. 5295, pp. 2079–2082, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Linden, V. R. Martins, M. A. M. Prado, M. Cammarota, I. Izquierdo, and R. R. Brentani, “Physiology of the prion protein,” Physiological Reviews, vol. 88, no. 2, pp. 673–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K.-M. Pan, M. Baldwin, J. Nguyen et al., “Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10962–10966, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Tzaban, G. Friedlander, O. Schonberger et al., “Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes,” Biochemistry, vol. 41, no. 42, pp. 12868–12875, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. P. J. Knowles, C. A. Waudby, G. L. Devlin et al., “An analytical solution to the kinetics of breakable filament assembly,” Science, vol. 326, no. 5959, pp. 1533–1537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Silveira, G. J. Raymond, A. G. Hughson et al., “The most infectious prion protein particles,” Nature, vol. 437, no. 7056, pp. 257–261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. P. Saborio, B. Permanne, and C. Soto, “Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding,” Nature, vol. 411, no. 6839, pp. 810–813, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. R. B. Wickner and D. C. Masison, “Evidence for two prions in yeast: [URE3] and [PSI],” Current Topics in Microbiology and Immunology, vol. 207, pp. 147–160, 1996. View at Google Scholar · View at Scopus
  19. M. Tanaka, S. R. Collins, B. H. Toyama, and J. S. Weissman, “The physical basis of how prion conformations determine strain phenotypes,” Nature, vol. 442, no. 7102, pp. 585–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. D. Wegrzyn, K. Bapat, G. P. Newnam, A. D. Zink, and Y. O. Chernoff, “Mechanism of prion loss after Hsp104 inactivation in yeast,” Molecular and Cellular Biology, vol. 21, no. 14, pp. 4656–4669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Derdowski, S. S. Sindi, C. L. Klaips, S. DiSalvo, and T. R. Serio, “A size threshold limits prion transmission and establishes phenotypic diversity,” Science, vol. 330, no. 6004, pp. 680–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Béranger, A. Mangé, J. Solassol, and S. Lehmann, “Cell culture models of transmissible spongiform encephalopathies,” Biochemical and Biophysical Research Communications, vol. 289, no. 2, pp. 311–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Piccardo, L. Cervenakova, I. Vasilyeva et al., “Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies,” Emerging Infectious Diseases, vol. 17, no. 12, pp. 2262–2269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Rubenstein, D. Hui, R. Race et al., “Replication of scrapie strains in vitro and their influence on neuronal functions,” Annals of the New York Academy of Sciences, vol. 724, pp. 331–337, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Nishida, D. A. Harris, D. Vilette et al., “Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein,” Journal of Virology, vol. 74, no. 1, pp. 320–325, 2000. View at Google Scholar · View at Scopus
  26. P. J. Bosque and S. B. Prusiner, “Cultured cell sublines highly susceptible to prion infection,” Journal of Virology, vol. 74, no. 9, pp. 4377–4386, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Vorberg, A. Raines, B. Story, and S. A. Priola, “Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents,” Journal of Infectious Diseases, vol. 189, no. 3, pp. 431–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lehmann, “Prion propagation in cell culture,” Methods in Molecular Biology, vol. 299, pp. 227–234, 2005. View at Google Scholar · View at Scopus
  29. G. S. Baron, A. C. Magalhães, M. A. M. Prado, and B. Caughey, “Mouse-adapted scrapie infection of SN56 cells: greater efficiency with microsome-associated versus purified PrP-res,” Journal of Virology, vol. 80, no. 5, pp. 2106–2117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Grassmann, H. Wolf, J. Hofmann, J. Graham, and I. Vorberg, “Cellular aspects of prion replication in vitro,” Viruses, vol. 5, no. 1, pp. 374–405, 2013. View at Google Scholar
  31. C. S. Greil, I. M. Vorberg, A. E. Ward, K. D. Meade-White, D. A. Harris, and S. A. Priola, “Acute cellular uptake of abnormal prion protein is cell type and scrapie-strain independent,” Virology, vol. 379, no. 2, pp. 284–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Paquet, N. Daude, M.-P. Courageot, J. Chapuis, H. Laude, and D. Vilette, “PrPc does not mediate internalization of PrPSc but is required at an early stage for de novo prion infection of Rov cells,” Journal of Virology, vol. 81, no. 19, pp. 10786–10791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Caughey and G. J. Raymond, “The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive,” The Journal of Biological Chemistry, vol. 266, no. 27, pp. 18217–18223, 1991. View at Google Scholar · View at Scopus
  34. I. Vorberg, A. Raines, and S. A. Priola, “Acute formation of protease-resistant prion protein does not always lead to persistent scrapie infection in vitro,” The Journal of Biological Chemistry, vol. 279, no. 28, pp. 29218–29225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Goold, S. Rabbanian, L. Sutton et al., “Rapid cell-surface prion protein conversion revealed using a novel cell system,” Nature Communications, vol. 2, no. 1, article 281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Taraboulos, D. Serban, and S. B. Prusiner, “Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells,” Journal of Cell Biology, vol. 110, no. 6, pp. 2117–2132, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. N. M. Veith, H. Plattner, C. A. O. Stuermer, W. J. Schulz-Schaeffer, and A. Bürkle, “Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy,” European Journal of Cell Biology, vol. 88, no. 1, pp. 45–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. R. Borchelt, A. Taraboulos, and S. B. Prusiner, “Evidence for synthesis of scrapie prion proteins in the endocytic pathway,” The Journal of Biological Chemistry, vol. 267, no. 23, pp. 16188–16199, 1992. View at Google Scholar · View at Scopus
  39. M. P. McKinley, A. Taraboulos, L. Kenaga et al., “Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells,” Laboratory Investigation, vol. 65, no. 6, pp. 622–630, 1991. View at Google Scholar · View at Scopus
  40. Z. Marijanovic, A. Caputo, V. Campana, and C. Zurzolo, “Identification of an intracellular site of prion conversion,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Naslavsky, R. Stein, A. Yanai, G. Friedlander, and A. Taraboulos, “Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform,” The Journal of Biological Chemistry, vol. 272, no. 10, pp. 6324–6331, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. D. R. Borchelt, M. Scott, A. Taraboulos, N. Stahl, and S. B. Prusiner, “Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells,” Journal of Cell Biology, vol. 110, no. 3, pp. 743–752, 1990. View at Google Scholar · View at Scopus
  43. M. Vey, S. Pilkuhn, H. Wille et al., “Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14945–14949, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Yamasaki, A. Suzuki, T. Shimizu, M. Watarai, R. Hasebe, and M. Horiuchi, “Characterization of intracellular localization of PrPSc in prion-infected cells using a mAb that recognizes the region consisting of aa 119-127 of mouse PrP,” Journal of General Virology, vol. 93, no. 3, pp. 668–680, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Peretz, R. A. Williamson, K. Kaneko et al., “Antibodies inhibit prion propagation and clear cell cultures of prion infectivity,” Nature, vol. 412, no. 6848, pp. 739–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Aguib, A. Heiseke, S. Gilch et al., “Autophagy induction by trehalose counteracts cellular prion infection,” Autophagy, vol. 5, no. 3, pp. 361–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Ertmer, S. Gilch, S.-W. Yun et al., “The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells,” The Journal of Biological Chemistry, vol. 279, no. 40, pp. 41918–41927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Heiseke, Y. Aguib, C. Riemer, M. Baier, and H. M. Schätzl, “Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy,” Journal of Neurochemistry, vol. 109, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. H. M. Schätzl, L. Laszlo, D. M. Holtzman et al., “A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis,” Journal of Virology, vol. 71, no. 11, pp. 8821–8831, 1997. View at Google Scholar · View at Scopus
  50. S. Ghaemmaghami, P.-W. Phuan, B. Perkins et al., “Cell division modulates prion accumulation in cultured cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 17971–17976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. A. Butler, M. R. D. Scott, J. M. Bockman et al., “Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins,” Journal of Virology, vol. 62, no. 5, pp. 1558–1564, 1988. View at Google Scholar · View at Scopus
  52. R. E. Race, B. Caughey, K. Graham, D. Ernst, and B. Chesebro, “Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones,” Journal of Virology, vol. 62, no. 8, pp. 2845–2849, 1988. View at Google Scholar · View at Scopus
  53. J. C. Watts, H. Huo, Y. Bai et al., “Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones,” PLoS Pathogens, vol. 5, no. 10, Article ID e1000608, 2009. View at Google Scholar · View at Scopus
  54. T. Jin, Y. Gu, G. Zanusso et al., “The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome,” The Journal of Biological Chemistry, vol. 275, no. 49, pp. 38699–38704, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Xu, E. Karnaukhova, and J. G. Vostal, “Human cellular prion protein interacts directly with clusterin protein,” Biochimica et Biophysica Acta, vol. 1782, no. 11, pp. 615–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Heiseke, Y. Aguib, and H. M. Schatzl, “Autophagy, prion infection and their mutual interactions,” Current Issues in Molecular Biology, vol. 12, no. 2, pp. 87–97, 2010. View at Google Scholar · View at Scopus
  57. C. Krammer, D. Kryndushkin, M. H. Suhre et al., “The yeast Sup35NM domain propagates as a prion in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 2, pp. 462–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. P. Hofmann, P. Denner, C. Nussbaum-Krammer et al., “Cell-to-cell propagation of infectious cytosolic protein aggregates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 15, pp. 5951–5956, 2013. View at Google Scholar
  59. C. Münch, J. O'Brien, and A. Bertolotti, “Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3548–3553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. P.-H. Ren, J. E. Lauckner, I. Kachirskaia, J. E. Heuser, R. Melki, and R. R. Kopito, “Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates,” Nature Cell Biology, vol. 11, no. 2, pp. 219–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Rujano, F. Bosveld, F. A. Salomons et al., “Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes,” PLoS Biology, vol. 4, no. 12, article e417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Wang, Z. Zhang, X. Wang et al., “Genetic informational RNA is not required for recombinant prion infectivity,” Journal of Virology, vol. 86, no. 3, pp. 1874–1876, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Maas, M. Geissen, M. H. Groschup et al., “Scrapie infection of prion protein-deficient cell line upon ectopic expression of mutant prion proteins,” The Journal of Biological Chemistry, vol. 282, no. 26, pp. 18702–18710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Fevrier, D. Vilette, F. Archer et al., “Cells release prions in association with exosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9683–9688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Leblanc, S. Alais, I. Porto-Carreiro et al., “Retrovirus infection strongly enhances scrapie infectivity release in cell culture,” EMBO Journal, vol. 25, no. 12, pp. 2674–2685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Alais, S. Simoes, D. Baas et al., “Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles,” Biology of the Cell, vol. 100, no. 10, pp. 603–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. L. J. Vella, R. A. Sharples, V. A. Lawson, C. L. Masters, R. Cappai, and A. F. Hill, “Packaging of prions into exosomes is associated with a novel pathway of PrP processing,” Journal of Pathology, vol. 211, no. 5, pp. 582–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Paquet, C. Langevin, J. Chapuis, G. S. Jackson, H. Laude, and D. Vilette, “Efficient dissemination of prions through preferential transmission to nearby cells,” Journal of General Virology, vol. 88, no. 2, pp. 706–713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Kanu, Y. Imokawa, D. N. Drechsel et al., “Transfer of scrapie prion infectivity by cell contact in culture,” Current Biology, vol. 12, no. 7, pp. 523–530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Gousset, E. Schiff, C. Langevin et al., “Prions hijack tunnelling nanotubes for intercellular spread,” Nature Cell Biology, vol. 11, no. 3, pp. 328–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Capellari, P. Parchi, C. M. Russo et al., “Effect of the E200K mutation on prion protein metabolism: comparative study of a cell model and human brain,” American Journal of Pathology, vol. 157, no. 2, pp. 613–622, 2000. View at Google Scholar · View at Scopus
  72. S. Lehmann and D. A. Harris, “Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 11, pp. 5610–5614, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. R. B. Petersen, P. Parchi, S. L. Richardson, C. B. Urig, and P. Gambetti, “Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein,” The Journal of Biological Chemistry, vol. 271, no. 21, pp. 12661–12668, 1996. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Capellari, S. I. A. Zaidi, A. C. Long, E. E. Kwon, and R. B. Petersen, “The Thr183Ala mutation, not the loss of the first glycosylation site, alters the physical properties of the prion protein,” Journal of Alzheimer's Disease, vol. 2, no. 1, pp. 27–35, 2000. View at Google Scholar · View at Scopus
  75. H. Lorenz, O. Windl, and H. A. Kretzschmar, “Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases,” The Journal of Biological Chemistry, vol. 277, no. 10, pp. 8508–8516, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. S. I. A. Zaidi, S. L. Richardson, S. Capellari et al., “Characterization of the F198S prion protein mutation: enhanced glycosylation and defective refolding,” Journal of Alzheimer's Disease, vol. 7, no. 2, pp. 159–171, 2005. View at Google Scholar · View at Scopus
  77. G. Zanusso, R. B. Petersen, T. Jin et al., “Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein,” The Journal of Biological Chemistry, vol. 274, no. 33, pp. 23396–23404, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Wegner, A. Römer, R. Schmalzbauer, H. Lorenz, O. Windl, and H. A. Kretzschmar, “Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells,” Journal of General Virology, vol. 83, no. 5, pp. 1237–1245, 2002. View at Google Scholar · View at Scopus
  79. C. Krammer, M. H. Suhre, E. Kremmer et al., “Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells,” FASEB Journal, vol. 22, no. 3, pp. 762–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Kristiansen, M. J. Messenger, P.-C. Klöhn et al., “Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis,” The Journal of Biological Chemistry, vol. 280, no. 46, pp. 38851–38861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Orsi, L. Fioriti, R. Chiesa, and R. Sitia, “Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein,” The Journal of Biological Chemistry, vol. 281, no. 41, pp. 30431–30438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Cohen and A. Taraboulos, “Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells,” EMBO Journal, vol. 22, no. 3, pp. 404–417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Gilch, K. F. Winklhofer, M. H. Groschup et al., “Intracellular re-routing of prion protein prevents propagation of PrPsc and delays onset of prion disease,” EMBO Journal, vol. 20, no. 15, pp. 3957–3966, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Nunziante, C. Kehler, E. Maas, M. U. Kassack, M. Groschup, and H. M. Schätzl, “Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPSc replication,” Journal of Cell Science, vol. 118, no. 21, pp. 4959–4973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Ghaemmaghami, J. C. Watts, H.-O. Nguyen, S. Hayashi, S. J. Dearmond, and S. B. Prusiner, “Conformational transformation and selection of synthetic prion strains,” Journal of Molecular Biology, vol. 413, no. 3, pp. 527–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. P. Mahal, C. A. Baker, C. A. Demczyk, E. W. Smith, C. Julius, and C. Weissmann, “Prion strain discrimination in cell culture: the cell panel assay,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20908–20913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. O. Speare, D. K. Offerdahl, A. Hasenkrug, A. B. Carmody, and G. S. Baron, “GPI anchoring facilitates propagation and spread of misfolded Sup35 aggregates in mammalian cells,” EMBO Journal, vol. 29, no. 4, pp. 782–794, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Perutz, “Polar zippers: their role in human disease,” Protein Science, vol. 3, no. 10, pp. 1629–1637, 1994. View at Google Scholar · View at Scopus
  89. M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5591–5595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” Journal of Molecular Biology, vol. 273, no. 3, pp. 729–739, 1997. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Goedert, F. Clavaguera, and M. Tolnay, “The propagation of prion-like protein inclusions in neurodegenerative diseases,” Trends in Neurosciences, vol. 33, no. 7, pp. 317–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. D. C. Rubinsztein, “Lessons from animal models of Huntington's disease,” Trends in Genetics, vol. 18, no. 4, pp. 202–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Lunkes, K. S. Lindenberg, L. Ben-Haem et al., “Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions,” Molecular Cell, vol. 10, no. 2, pp. 259–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. E. M. Sontag, G. P. Lotz, N. Agrawal et al., “Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington's disease models,” The Journal of Neuroscience, vol. 32, no. 32, pp. 11109–11119, 2012. View at Google Scholar
  95. J. Schulte and J. T. Littleton, “The biological function of the Huntingtin protein and its relevance to Huntington's Disease pathology,” Current Trends in Neurology, vol. 5, pp. 65–78, 2011. View at Google Scholar
  96. A. Roscic, B. Baldo, C. Crochemore, D. Marcellin, and P. Paganetti, “Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model,” Journal of Neurochemistry, vol. 119, no. 2, pp. 398–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. I. V. Guzhova, V. F. Lazarev, A. V. Kaznacheeva et al., “Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease,” Human Molecular Genetics, vol. 20, no. 20, pp. 3953–3963, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Alba Sorolla, C. Nierga, M. José Rodríguez-Colman et al., “Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation,” Archives of Biochemistry and Biophysics, vol. 510, no. 1, pp. 27–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. F. Herrera, S. Tenreiro, L. Miller-Fleming, and T. F. Outeiro, “Visualization of cell-to-cell transmission of mutant huntingtin oligomers,” PLOS Currents, vol. 3, Article ID RRN1210, 2011. View at Publisher · View at Google Scholar
  100. N. Bocharova, R. Chave-Cox, S. Sokolov, D. Knorre, and F. Severin, “Protein aggregation and neurodegeneration: clues from a yeast model of Huntington's disease,” Biochemistry, vol. 74, no. 2, pp. 231–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002. View at Google Scholar · View at Scopus
  102. B. Ravikumar, S. Imarisio, S. Sarkar, C. J. O'Kane, and D. C. Rubinsztein, “Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease,” Journal of Cell Science, vol. 121, no. 10, pp. 1649–1660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Gong, M. C. Y. Lim, J. Wanderer, A. Wyttenbach, and A. J. Morton, “Time-lapse analysis of aggregate formation in an inducible PC12 cell model of Huntington's disease reveals time-dependent aggregate formation that transiently delays cell death,” Brain Research Bulletin, vol. 75, no. 1, pp. 146–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Sokolov, A. Pozniakovsky, N. Bocharova, D. Knorre, and F. Severin, “Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers,” Biochimica et Biophysica Acta, vol. 1757, no. 5-6, pp. 660–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. D. W. Colby, J. P. Cassady, G. C. Lin, V. M. Ingram, and K. D. Wittrup, “Stochastic kinetics of intracellular huntingtin aggregate formation,” Nature Chemical Biology, vol. 2, no. 6, pp. 319–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Wang, P. J. Lim, C. Yin, M. Rieckher, B. E. Vogel, and M. J. Monteiro, “Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin,” Human Molecular Genetics, vol. 15, no. 6, pp. 1025–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Mukai, T. Isagawa, E. Goyama et al., “Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 10887–10892, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. K. L. Sugars, R. Brown, L. J. Cook, J. Swartz, and D. C. Rubinsztein, “Decreased cAMP response element-mediated transcription. An early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis,” The Journal of Biological Chemistry, vol. 279, no. 6, pp. 4988–4999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Sittler, R. Lurz, G. Lueder et al., “Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease,” Human Molecular Genetics, vol. 10, no. 12, pp. 1307–1315, 2001. View at Google Scholar · View at Scopus
  110. S. Krobitsch and S. Lindquist, “Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1589–1594, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. J. K. Cooper, G. Schilling, M. F. Peters et al., “Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture,” Human Molecular Genetics, vol. 7, no. 5, pp. 783–790, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Kidd, “Paired helical filaments in electron microscopy of Alzheimer's Disease,” Nature, vol. 197, no. 4863, pp. 192–193, 1963. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Berriman, L. C. Serpell, K. A. Oberg, A. L. Fink, M. Goedert, and R. A. Crowther, “Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-β structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 9034–9038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. A. D. C. Alonso, I. Grundke-Iqbal, H. S. Barra, and K. Iqbal, “Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 298–303, 1997. View at Google Scholar · View at Scopus
  115. C.-X. Gong, F. Liu, I. Grundke-Iqbal, and K. Iqbal, “Post-translational modifications of tau protein in Alzheimer's disease,” Journal of Neural Transmission, vol. 112, no. 6, pp. 813–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. V. Vogelsberg-Ragaglia, J. Bruce, C. Richter-Landsberg et al., “Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells,” Molecular Biology of the Cell, vol. 11, no. 12, pp. 4093–4104, 2000. View at Google Scholar · View at Scopus
  117. I. Khlistunova, J. Biernat, Y. Wang et al., “Inducible expression of tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs,” The Journal of Biological Chemistry, vol. 281, no. 2, pp. 1205–1214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. B. Frost, R. L. Jacks, and M. I. Diamond, “Propagation of Tau misfolding from the outside to the inside of a cell,” The Journal of Biological Chemistry, vol. 284, no. 19, pp. 12845–12852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. N. Kfoury, B. B. Holmes, H. Jiang, D. M. Holtzman, and M. I. Diamond, “Trans-cellular propagation of Tau aggregation by fibrillar species,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19440–19451, 2012. View at Google Scholar
  120. T. Nonaka, S. T. Watanabe, T. Iwatsubo, and M. Hasegawa, “Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases,” The Journal of Biological Chemistry, vol. 285, no. 45, pp. 34885–34898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. J. L. Guo and V. M. Lee, “Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau,” FEBS Letters, vol. 587, no. 6, pp. 717–723, 2013. View at Google Scholar
  122. J. W. Wu, M. Herman, L. Liu et al., “Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons,” The Journal of Biological Chemistry, vol. 288, no. 3, pp. 1856–1870, 2013. View at Google Scholar
  123. J. L. Guo and V. M.-Y. Lee, “Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles,” The Journal of Biological Chemistry, vol. 286, no. 17, pp. 15317–15331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. H. A. Lashuel, C. R. Overk, A. Oueslati, and E. Masliah, “The many faces of alpha-synuclein: from structure and toxicity to therapeutic target,” Nature Reviews Neuroscience, vol. 14, no. 1, pp. 38–48, 2013. View at Google Scholar
  125. A. B. Singleton, M. Farrer, J. Johnson et al., “alpha-Synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Beyer and A. Ariza, “Alpha-synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration,” Molecular Neurobiology, vol. 47, no. 2, pp. 509–524, 2013. View at Google Scholar
  128. B. Fauvet, M. K. Mbefo, M. B. Fares et al., “α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer,” The Journal of Biological Chemistry, vol. 287, no. 19, pp. 15345–15364, 2012. View at Google Scholar
  129. J. Xu, S.-Y. Kao, F. J. S. Lee, W. Song, L.-W. Jin, and B. A. Yankner, “Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease,” Nature Medicine, vol. 8, no. 6, pp. 600–606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. R. Mazzulli, A. J. Mishizen, B. I. Giasson et al., “Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates,” The Journal of Neuroscience, vol. 26, no. 39, pp. 10068–10078, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. K. Yamakawa, Y. Izumi, H. Takeuchi et al., “Dopamine facilitates α-synuclein oligomerization in human neuroblastoma SH-SY5Y cells,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 129–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Bartels, J. G. Choi, and D. J. Selkoe, “α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation,” Nature, vol. 477, no. 7362, pp. 107–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. P. J. Kahle, M. Neumann, L. Ozmen, and C. Haass, “Physiology and pathophysiology of α-synuclein cell culture and transgenic animal models based on a Parkinson's disease-associated protein,” Annals of the New York Academy of Sciences, vol. 920, pp. 33–41, 2000. View at Google Scholar · View at Scopus
  134. R. A. Bodner, T. F. Outeiro, S. Altmann et al., “Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington's and Parkinson's diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 11, pp. 4246–4251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. N. Ostrerova-Golts, L. Petrucelli, J. Hardy, J. M. Lee, M. Farer, and B. Wolozin, “The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity,” The Journal of Neuroscience, vol. 20, no. 16, pp. 6048–6054, 2000. View at Google Scholar · View at Scopus
  136. J. Follett, B. Darlow, M. B. Wong, J. Goodwin, and D. L. Pountney, “Potassium depolarization and raised calcium induces alpha-synuclein aggregates,” Neurotoxicity Research, vol. 23, no. 4, pp. 378–392, 2013. View at Google Scholar
  137. M. Gerard, A. Deleersnijder, V. Daniëls et al., “Inhibition of FK506 binding proteins reduces α-synuclein aggregation and Parkinson's disease-like pathology,” The Journal of Neuroscience, vol. 30, no. 7, pp. 2454–2463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Nath, J. Goodwin, Y. Engelborghs, and D. L. Pountney, “Raised calcium promotes α-synuclein aggregate formation,” Molecular and Cellular Neuroscience, vol. 46, no. 2, pp. 516–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. J. Goodwin, S. Nath, Y. Engelborghs, and D. L. Pountney, “Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation,” Neurochemistry International, vol. 62, no. 5, pp. 703–711, 2013. View at Publisher · View at Google Scholar
  140. K. Kondo, S. Obitsu, and R. Teshima, “α-Synuclein aggregation and transmission are enhanced by leucine-rich repeat kinase 2 in human neuroblastoma SH-SY5Y cells,” Biological and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 1078–1083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. H.-J. Lee and S.-J. Lee, “Characterization of cytoplasmic α-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells,” The Journal of Biological Chemistry, vol. 277, no. 50, pp. 48976–48983, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. E. J. Bae, H. J. Lee, E. Rockenstein et al., “Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission,” The Journal of Neuroscience, vol. 32, no. 39, pp. 13454–13469, 2012. View at Google Scholar
  143. K. M. Danzer, D. Haasen, A. R. Karow et al., “Different species of α-synuclein oligomers induce calcium influx and seeding,” The Journal of Neuroscience, vol. 27, no. 34, pp. 9220–9232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. K. M. Danzer, S. K. Krebs, M. Wolff, G. Birk, and B. Hengerer, “Seeding induced by α-synuclein oligomers provides evidence for spreading of α-synuclein pathology,” Journal of Neurochemistry, vol. 111, no. 1, pp. 192–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. K. C. Luk, C. Song, P. O'Brien et al., “Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 20051–20056, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. L. A. Volpicelli-Daley, K. C. Luk, T. P. Patel et al., “Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death,” Neuron, vol. 72, no. 1, pp. 57–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Desplats, H.-J. Lee, E.-J. Bae et al., “Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13010–13015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. H.-J. Lee, J.-E. Suk, C. Patrick et al., “Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies,” The Journal of Biological Chemistry, vol. 285, no. 12, pp. 9262–9272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. A. Jang, H.-J. Lee, J.-E. Suk, J.-W. Jung, K.-P. Kim, and S.-J. Lee, “Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions,” Journal of Neurochemistry, vol. 113, no. 5, pp. 1263–1274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. H.-J. Lee, S. Patel, and S.-J. Lee, “Intravesicular localization and exocytosis of α-synuclein and its aggregates,” The Journal of Neuroscience, vol. 25, no. 25, pp. 6016–6024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. E. Emmanouilidou, K. Melachroinou, T. Roumeliotis et al., “Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival,” The Journal of Neuroscience, vol. 30, no. 20, pp. 6838–6851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. L. Alvarez-Erviti, Y. Seow, A. H. Schapira et al., “Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission,” Neurobiology of Disease, vol. 42, no. 3, pp. 360–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. D. W. Cleveland and J. D. Rothstein, “From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 806–819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. N. Shibata, A. Hirano, M. Kobayashi et al., “Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 4, pp. 481–490, 1996. View at Google Scholar · View at Scopus
  155. M. Prudencio, A. Durazo, J. P. Whitelegge, and D. R. Borchelt, “Modulation of mutant superoxide dismutase 1 aggregation by co-expression of wild-type enzyme,” Journal of Neurochemistry, vol. 108, no. 4, pp. 1009–1018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. L. I. Grad, W. C. Guest, A. Yanai et al., “Intermolecular transmission of superoxide dismutase 1 misfolding in living cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 39, pp. 16398–16403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. B. L. Roberts, K. Patel, H. H. Brown, and D. R. Borchelt, “Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures,” PLoS One, vol. 7, no. 10, Article ID e47838, 2012. View at Google Scholar
  158. K. Roberts, R. Zeineddine, L. Corcoran, W. Li, I. L. Campbell, and J. J. Yerbury, “Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype,” Glia, vol. 61, no. 3, pp. 409–419, 2013. View at Google Scholar
  159. P. Mondola, T. Annella, R. Serù et al., “Secretion and increase of intracellular CuZn superoxide dismutase content in human neuroblastoma SK-N-BE cells subjected to oxidative stress,” Brain Research Bulletin, vol. 45, no. 5, pp. 517–520, 1998. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Urushitani, A. Sik, T. Sakurai, N. Nukina, R. Takahashi, and J.-P. Julien, “Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis,” Nature Neuroscience, vol. 9, no. 1, pp. 108–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. C. Gomes, S. Keller, P. Altevogt, and J. Costa, “Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 428, no. 1, pp. 43–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Bousset, L. Pieri, G. Ruiz-Arlandis et al., “Structural and functional characterization of two alpha-synuclein strains,” Nature Communications, vol. 4, article 2575, 2013. View at Publisher · View at Google Scholar